GENERAL ANALYSIS PhD Qualify Exam. Sep. 24, 2010

(E: easy, M: moderate, D: difficult)

- 1. (E, 15 pts, 2004, 9) Let f and $f_k, k = 1, 2, ...$ be measurable and finite a. e. in E, where $E \subset \mathbb{R}^n$ has finite measure. Prove that if $f_k \to f$ a. e., then f_k converges to f in measure.
- 2. (E, 15 pts, 2004, 9) Let $\{f_k\}$ be a sequence of nonnegative measurable functions defined on $E \subset \mathbb{R}^n$. Prove that if $f_k \to f$ pointwise and $f_k \leq f$ for all k, then $\int_E f_k \to \int_E f$ as $k \to \infty$.
- 3. (E, 15 pts, 2007, 9) Show that every Lebesgue integrable function is the limit, almost everywhere, of a certain sequence of step functions.
- 4. (D, 20 pts, 2007, 9) 1 . Define

$$F(x) = \frac{1}{x} \int_0^x f(t)dt, \quad 0 < x < \infty$$

(a) Prove that

$$||F||_p \le \frac{p}{p-1} ||f||_p$$

- (b) Prove that the equality holds only if f = 0 a.e..
- 5. (E, 15 pts) Let f be a nonnegative measurable function defined on $E \subset \mathbb{R}$. Show that for any $\lambda > 0$,

$$m\{x \in E | f(x) \ge \lambda\} \le \frac{1}{\lambda} \int_E f,$$

where $m\{\ldots\}$ denotes the measure of that set.

6. (M, 20 pts) Let f be a bounded function on the closed, bounded interval [a, b]. Then f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f fails to be continuous has measure zero.