Each question is 20 points.

1. Let $f_{n}, f_{n}^{\prime} \in L^{2}[0,1]$ for each $n \in \mathbb{N}$. Suppose that $\left\{f_{n}\right\}$ is a sequence of absolutcly continuous functions, and that there exist $f, g \in L^{2}[0,1]$ such that

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{2}[0,1]}=0, \quad \lim _{n \rightarrow \infty}\left\|f_{n}^{\prime}-g\right\|_{L^{2}[0,1]}=0
$$

Show that there exists a number $c \in \mathbb{R}$ such that

$$
f(x)=c+\int_{0}^{x} g(t) d t
$$

for almost everywhere $x \in[0,1]$.
2. Let $\varphi \in L^{1}(\mathbb{R})$ be such that $\int_{\mathbb{R}}|\varphi(x)| d x=1$. For $\varepsilon>0$, define the function φ_{ε} by

$$
\varphi_{\varepsilon}(x)=\varepsilon^{-1} \varphi(x / \varepsilon)
$$

then for any function $f \in L^{p}(\mathbb{R}), 1 \leq p<\infty$ we have $\int_{\mathbb{R}} f(x-y) \varphi_{\varepsilon}(y) d y \rightarrow f$ in $L^{p}(\mathbb{R})$ as $\varepsilon \rightarrow 0$.
3. Let f, g be real-valued continuous functions defined on \mathbb{R} and $g(x+1)=g(x)$. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(x) d x\right)
$$

and

$$
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} f(x) \sin (n x) d x=0
$$

4. Let f be a real valued function defined on $(0,1)$ such that $f(x)=0$ if x is rational and $f(x)=\frac{1}{a}$ if x is irrational, where a is the first nonzero integer in the decimal representation of x. Prove that f is measurable and find $\int_{(0,1)} f d x$.
5. Show that $\int_{0}^{\infty} \frac{\sin t}{e^{t}-x} d t=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n^{2}+1}, \forall x \in[-1,1]$.
