1. (15%) Show that the Newton's method for finding a simple root of a function converges at least quadratically. (Recall that α is a simple root of f if $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$.)
2. (15%) Show that a second-order Runge-Kutta formula of the form

$$
x(t+h)=x(t)+w_{1} h f(t, x)+w_{2} h f(t+\alpha h, x+\beta h f)
$$

must impose these conditions:

$$
\begin{aligned}
w_{1}+w_{2} & =1 \\
w_{2} \alpha & =\frac{1}{2} \\
w_{2} \beta & =\frac{1}{2}
\end{aligned}
$$

3. (15%) Find the constants $A_{0}, A_{1}, A_{2}, x_{0}, x_{1}$, and x_{2} such that the Gaussian quadrature rule

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

is exact for f in Π_{5}, which is the set of polynomials of degree less than or equal to 5 . (Hint: the polynomial $x^{3}-\frac{3}{5} x$ is orthorgonal to Π_{2})
4. (15%) Prove that if a nonsingular matrix A has an $L U$-factorization in which L is a unit (i.e. $l_{i i}=1$ for all i) lower triangular matrix, then L and U are unique.
5. (10%) Let $v^{(k)}, k=1,2, \ldots$, be the search directions in the method of descent. Prove that

$$
v^{(k)} \perp v^{(k+1)}, \quad \text { for } k=1,2, \ldots
$$

6. (10%) Write an efficient algorithm for evaluating

$$
u=\sum_{i=1}^{n} \prod_{j=1}^{i} d_{j}
$$

7. (10%) Determine the value of (a, b, c) that makes the function

$$
f(x)= \begin{cases}x^{3} & x \in[0,1] \\ \frac{1}{2}(x-1)^{3}+a(x-1)^{2}+b(x-1)+c & x \in[1,3]\end{cases}
$$

a cubic spline.
8. (10%) Find the best approximation to $\sin (x)$ by a function $u(x)=\lambda x$ using the supremum norm.

