PhD Qualify Exam, Analysis, Sept. 26, 2008
 Show all works

1. [10\%] Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^{2}} \cos (x t) d x$.
2. [20\%] Let $\mathbf{T}(x, y)=\left(e^{x} \cos y-1, e^{x} \sin y\right)=(u, v)$ be a transformation: $R^{2} \rightarrow R^{2}$, and f be a continuous function on R^{2} with compact support. Let $J_{\mathbf{T}}$ be the Jacobian of \mathbf{T}. (a) Show that there are functions g_{1} and g_{2} from R^{2} into R^{1} such that $\mathbf{T}(x, y)=\mathbf{G}_{\mathbf{2}} \circ \mathbf{G}_{\mathbf{1}}(x, y)$, where $\mathbf{G}_{\mathbf{1}}(x, y)=\left(g_{1}(x, y), y\right)$ and $\mathbf{G}_{\mathbf{2}}(z, w)=\left(z, g_{2}(z, w)\right)$. (b) Show that, for Riemann integral, $\int_{R^{2}} f(u, v) d u d v=\int_{R^{2}} f(\mathbf{T}(x, y))\left|J_{\mathbf{T}}(x, y)\right| d x d y$. Use the result in part (a) to give a direct proof. (c) Under what conditions, does the formula in part (b) hold for Lebesgue integral?
3. $[20 \%]$ (Exam, Feb. 2006) Let C be the Cantor Set. (a) Show that $C+C=[0,2]$. Recall that $C+C \equiv\{x+y: x, y \in C\}$. (b) Compute the following quantities: (i) $\lambda_{\alpha}^{\epsilon}(C) \equiv \inf _{\left\langle B_{i}\right\rangle} \sum_{i=1}^{\infty} r_{i}^{\alpha}$, where $\left\langle r_{i}\right\rangle$ are radii of sequence of balls $\left\langle B_{i}\right\rangle$ that covers C and for which $r_{i}<\epsilon$. (ii) $m_{\alpha}(C) \equiv \lim _{\epsilon \rightarrow 0} \lambda_{\alpha}^{\epsilon}(C)$. (iii) $\alpha_{0} \equiv \sup \left\{\alpha: m_{\alpha}(C)=\infty\right\}$. (α_{0} is the Hausdorff dimension of C.) (iv) $m_{\alpha_{0}}(C)$. (Hausdorff measure of C.) (v) Find the Hausdorff measure of a unit disc in R^{2}.
4. [10\%] (Exam, Feb. 2007) Let $1<p<\infty, f \in L^{p}(0, \infty), F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t$, and $0<x<\infty$. (a) Prove that $\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}$. (b) Prove that the equality holds only if $f=0$ a.e. (c) What can you say about $p=1$ and $p=\infty$?
5. [10\%] (Exam, Sept. 2004) Assume that $p>0$ and $\int_{E}\left|f-f_{k}\right|^{p} d x \rightarrow 0$ as $k \rightarrow \infty$. Show that $\left\{f_{k}\right\}_{k=1}^{\infty}$ converges in measure on E to f.
6. [10\%] (Exam, Sept. 2004) Let ϕ be a nonnegative bounded measurable function on R^{n} such that $\phi(x)=0$ for $|x| \geq 1$, and $\int \phi(x) d x=1$. For $\epsilon>0$, we define $\phi_{\epsilon}(x)=\epsilon^{-n} \phi\left(\frac{x}{\epsilon}\right)$. If $f \in L^{2}\left(R^{n}\right)$, show that $\lim _{\epsilon \rightarrow 0} f * \phi_{\epsilon}=f$ in L^{2}. (* means convolution.)
7.[20\%](Exam, Feb. 2000) Let \mathcal{M} be the collection of Lebesgue measurable subsets of R. μ be the Lebesgue measure on (R, \mathcal{M}), and μ_{0} be the counting measure on (R, \mathcal{M}). Define ν on (R, \mathcal{M}) by $\nu(E)=\mu_{0}(E \cap\{0\})-\mu(E \cap[0,1])+\int_{E} \frac{1}{1+x^{2}} d x .(E \in \mathcal{M})($ a) Find a Hahn decomposition of R for measure ν.(b) Find the Jordan decomposition of ν. (c) Find the Lebesgue decomposition of $|\nu|$ with respect to μ. (d) Compute the Radon-Nikodym derivative of the absolutely continuous part of $|\nu|$ with respect to μ.
