PhD Qualify Exam, Analysis, Sept. 26, 2008 Show all works

1.[10%] Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^2} \cos(xt) dx$.

2.[20%] Let $\mathbf{T}(x,y) = (e^x \cos y - 1, e^x \sin y) = (u,v)$ be a transformation: $R^2 \to R^2$, and f be a continuous function on R^2 with compact support. Let $J_{\mathbf{T}}$ be the Jacobian of \mathbf{T} . (a) Show that there are functions g_1 and g_2 from R^2 into R^1 such that $\mathbf{T}(x,y) = \mathbf{G_2} \circ \mathbf{G_1}(x,y)$, where $\mathbf{G_1}(x,y) = (g_1(x,y), y)$ and $\mathbf{G_2}(z,w) = (z,g_2(z,w))$. (b) Show that, for Riemann integral, $\int_{R^2} f(u,v) \, du \, dv = \int_{R^2} f(\mathbf{T}(x,y)) \left| J_{\mathbf{T}}(x,y) \right| \, dx \, dy$. Use the result in part (a) to give a direct proof. (c) Under what conditions, does the formula in part (b) hold for Lebesgue integral?

3.[20%](Exam, Feb. 2006) Let C be the Cantor Set. (a) Show that C + C = [0, 2]. Recall that $C+C \equiv \{x+y: x, y \in C\}$. (b) Compute the following quantities: (i) $\lambda_{\alpha}^{\epsilon}(C) \equiv \inf_{\langle B_i \rangle} \sum_{i=1}^{\infty} r_i^{\alpha}$, where $\langle r_i \rangle$ are radii of sequence of balls $\langle B_i \rangle$ that covers C and for which $r_i \langle \epsilon$. (ii) $m_{\alpha}(C) \equiv \lim_{\epsilon \to 0} \lambda_{\alpha}^{\epsilon}(C)$. (iii) $\alpha_0 \equiv \sup\{\alpha : m_{\alpha}(C) = \infty\}$. (α_0 is the Hausdorff dimension of C.) (iv) $m_{\alpha_0}(C)$. (Hausdorff measure of C.) (v) Find the Hausdorff measure of a unit disc in \mathbb{R}^2 .

4.[10%](Exam, Feb. 2007) Let $1 , <math>f \in L^p(0, \infty)$, $F(x) = \frac{1}{x} \int_0^x f(t) dt$, and $0 < x < \infty$. (a) Prove that $||F||_p \le \frac{p}{p-1} ||f||_p$. (b) Prove that the equality holds only if f = 0 a.e. (c) What can you say about p = 1 and $p = \infty$?

5.[10%](Exam, Sept. 2004) Assume that p > 0 and $\int_E |f - f_k|^p dx \to 0$ as $k \to \infty$. Show that $\{f_k\}_{k=1}^{\infty}$ converges in measure on E to f.

6.[10%](Exam, Sept. 2004) Let ϕ be a nonnegative bounded measurable function on \mathbb{R}^n such that $\phi(x) = 0$ for $|x| \ge 1$, and $\int \phi(x) \, dx = 1$. For $\epsilon > 0$, we define $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(\frac{x}{\epsilon})$. If $f \in L^2(\mathbb{R}^n)$, show that $\lim_{\epsilon \to 0} f * \phi_{\epsilon} = f$ in L^2 . (* means convolution.)

7.[20%](Exam, Feb. 2000) Let \mathcal{M} be the collection of Lebesgue measurable subsets of R. μ be the Lebesgue measure on (R, \mathcal{M}) , and μ_0 be the counting measure on (R, \mathcal{M}) . Define ν on (R, \mathcal{M}) by $\nu(E) = \mu_0(E \cap \{0\}) - \mu(E \cap [0, 1]) + \int_E \frac{1}{1 + x^2} dx$. $(E \in \mathcal{M})$ (a) Find a Hahn decomposition of R for measure ν . (b) Find the Jordan decomposition of ν . (c) Find the Lebesgue decomposition of $|\nu|$ with respect to μ . (d) Compute the Radon-Nikodym derivative of the absolutely continuous part of $|\nu|$ with respect to μ .