國立成功大學應用數學所 數值分析 博士班資格考 March, 9, 2007

1. Since

$$= \frac{(\sqrt{2}-1)^6}{(\sqrt{2}+1)^6} = \frac{(3-2\sqrt{2})^3}{(3+2\sqrt{2})^3} = \frac{99-70\sqrt{2}}{99+70\sqrt{2}}$$

please point out which one formula gives a minimal round-off error and explain why? $_{\scriptscriptstyle (15\%)}$

2. Consider the initial value problem

(I.V.P.)
$$\begin{cases} y' = f(t, y), & a \le t \le b, \\ y(a) = \alpha. \end{cases}$$

Show that the difference method

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + a_1 f(t_i, w_i) + a_2 f(t_i + \beta, w_i + \delta f(t_i, w_i)), \ i = 0, 1, \dots, n-1,$$

cannot give a 3rd-order local truncation error, i.e. $O(h^3)$ where $h = \frac{b-a}{n}$, for any choice of constants a_1 , a_2 , β and δ . (15%)

3. Consider a 4-digit decimal system. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 + \varepsilon \\ 1 & 2 + \varepsilon \end{bmatrix}$ where $\varepsilon = 10^{-2}$.

- (a) Show that rank(A) = 2. (5%)
- (b) Show that for a given $b \in \mathbb{R}^3$ the least square problem,

$$\min_{x \in \mathbb{R}^2} \|Ax - b\|_2, \tag{LS}$$

can not be usually solved by using the normal equation. (10%)

(c) Find A^{\dagger} , denotes the pseudo-inverse (generalized inverse) of A. Let $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, use A^{\dagger} to construct a solution of problem (LS) so that the constructed solution has at least 3 significants. (10%) (Hint: $f\ell(1.0 + \varepsilon^2) = 1.0$, where $f\ell(\cdot)$ is the floating operator.)

- 4. <u>Definition</u>: A sequence $\{p_n\}_{n=1}^{\infty}$ is said to be convergent to p of order α with asymptotic error constant λ if $\lim_{n \to \infty} \frac{|p_{n+1}-p|}{|p_n-p|^{\alpha}} = \lambda$.
 - (a) Let $g : [a, b] \longrightarrow [a, b]$ be a continuous function. Show that there is a point $p^* \in [a, b]$ such that $g(p^*) = p^*$. (5%)
 - (b) Let $p_{n+1} = g(p_n)$ (with a given p_0) defined a fixed point iteration. Please give a sufficient condition such that the fixed point iteration is convergent of order k, where k is a positive integer. (10%)
 - (c) Show that the Newton's iteration is a local quadratic method (i.e. $\alpha = 2$), whenever the iteration is convergent. (10%)
- 5. Calculate $30\frac{1}{3}$ upto 3 digits after the decimal point and estimate the error bound of your answer. (10%)
- 6. Let $x_0, x_1, \ldots, x_n \in \mathbb{R}$ be n+1 distinct numbers and $y_0, y_1, \ldots, y_n \in \mathbb{R}$. Show that there is a unique polynomial $P_n(x)$ of degree n such that $P_n(x_i) = y_i$, for $i = 0, 1, \ldots, n$. (10%)