國立成功大學應用數學所 數値分析 博士班資格考 March，9， 2007

1．Since

$$
\begin{aligned}
&(\sqrt{2}-1)^{6}=(3-2 \sqrt{2})^{3}=99-70 \sqrt{2} \\
&= \frac{1}{(\sqrt{2}+1)^{6}}=\frac{1}{(3+2 \sqrt{2})^{3}}=\frac{1}{99+70 \sqrt{2}},
\end{aligned}
$$

please point out which one formula gives a minimal round－off error and explain why？（15\％）

2．Consider the initial value problem

$$
\text { (I.V.P.) }\left\{\begin{array}{l}
y^{\prime}=f(t, y), \quad a \leq t \leq b, \\
y(a)=\alpha .
\end{array}\right.
$$

Show that the difference method

$$
\begin{aligned}
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+a_{1} f\left(t_{i}, w_{i}\right)+a_{2} f\left(t_{i}+\beta, w_{i}+\delta f\left(t_{i}, w_{i}\right)\right), i=0,1, \ldots, n-1
\end{aligned}
$$

cannot give a $3^{\text {rd }}$－order local truncation error，i．e．$O\left(h^{3}\right)$ where $h=\frac{b-a}{n}$ ， for any choice of constants a_{1}, a_{2}, β and δ ．（15\％）
3．Consider a 4－digit decimal system．Let $A=\left[\begin{array}{cc}1 & 2 \\ 2 & 4+\varepsilon \\ 1 & 2+\varepsilon\end{array}\right]$ where $\varepsilon=10^{-2}$ ．
（a）Show that $\operatorname{rank}(A)=2$ ．${ }^{(5 \%)}$
（b）Show that for a given $b \in \mathbb{R}^{3}$ the least square problem，

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{2}}\|A x-b\|_{2}, \tag{LS}
\end{equation*}
$$

can not be usually solved by using the normal equation．（10\％）
（c）Find A^{\dagger} ，denotes the pseudo－inverse（generalized inverse）of A ． Let $b=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ ，use A^{\dagger} to construct a solution of problem（LS）so that the constructed solution has at least 3 significants．（10\％） （Hint：$f \ell\left(1.0+\varepsilon^{2}\right)=1.0$ ，where $f \ell(\cdot)$ is the floating operator．）
4. Definition: A sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ is said to be convergent to p of order α with asymptotic error constant λ if $\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda$.
(a) Let $g:[a, b] \longrightarrow[a, b]$ be a continuous function. Show that there is a point $p^{*} \in[a, b]$ such that $g\left(p^{*}\right)=p^{*} .(5 \%)$
(b) Let $p_{n+1}=g\left(p_{n}\right)$ (with a given p_{0}) defined a fixed point iteration. Please give a sufficient condition such that the fixed point iteration is convergent of order k, where k is a positive integer. (10\%)
(c) Show that the Newton's iteration is a local quadratic method (i.e. $\alpha=2$), whenever the iteration is convergent. (10\%)
5. Calculate $30^{\frac{1}{3}}$ upto 3 digits after the decimal point and estimate the error bound of your answer. (10%)
6. Let $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{R}$ be $n+1$ distinct numbers and $y_{0}, y_{1}, \ldots, y_{n} \in \mathbb{R}$. Show that there is a unique polynomial $P_{n}(x)$ of degree n such that $P_{n}\left(x_{i}\right)=y_{i}$, for $i=0,1, \ldots, n$. (10\%)

