[15\%] 1. For what positive integers n is it true that the only abelian groups of order n is cyclic. Show your arguments.
[15\%] 2. Let G be a group and let H_{1}, \ldots, H_{n} be subgroups of G of finite index. Set $H=$ $H_{1} \cap H_{2} \cap \cdots \cap H_{n}$. Show that H has finite index in G and

$$
[G: H] \leq\left[G: H_{1}\right]\left[G: H_{2}\right] \cdots\left[G: H_{n}\right] .
$$

[15\%] 3. Let R be a commutative ring with unity and let M be an ideal of R. Show that M is maximal if and only if R / M is a field. (An ideal M of R is said to be maximal if J is an ideal of R containing M, then $J=M$ or $J=R$.)
[15\%]
4. Describe all ring homomorphisms of $\mathbb{Z} \oplus \mathbb{Z}$ into \mathbb{Z}. (Remember that the identities may not be preserved by a homomorphism.)
$[15 \%]$ 5. Let F be a field. Let I be an ideal of $F[x]$ such that $p(x) q(x) \in I$ implies $p(x) \in I$ or $q(x) \in I$. Prove that I is a maximal ideal in $F[x]$.
[15\%] 6. Let F be a finite field of order p^{n} where p is a prime and n a positive integer. Show that there is exactly one subfield of p^{m} elements for each divisor m of n.
[10\%] 7. Let R be a ring and A an R-module. Prove that if $f: A \rightarrow A$ is an R-homomorphism such that $f \circ f=f$, then $A=\operatorname{Ker} f \oplus \operatorname{Im} f$.

