PhD Qualify Exam, Analysis, Feb. 24, 2006

Show all works

1. [10\%] Explain the meaning of the Lebesgue integral $\int_{R} f(x) d x$. Begin by defining Lebesgue outer measure, measurable sets and measurable functions. Then explain how the Lebesguge integral is defined.
2. [15\%] Suppose $f \in L^{1}(R)$. Let $F(x)=\int_{R} f(t) \frac{\sin x t}{t} d t$.
a. Prove that F is differentiable on R and find $F^{\prime}(x)$.
b. Determine whether or not F is absolutely continuous on every compact subinterval of R.
3. [15\%] Suppose $\quad f_{n} \in L^{2}[0,1], n=1,2,3, \cdots$, and $\quad \sum_{1}^{\infty}\left\|f_{n}\right\|_{2}<\infty$. Prove that
a. $\quad \sum_{1}^{\infty}|f(x)|<\infty$ a.e.
b. If $\quad f(x)=\sum_{1}^{\infty} f(x) \quad$ a.e., then $\quad f \in L^{2}[0,1]$ and $\quad\|f\|_{2} \leq \sum_{1}^{\infty}\left\|f_{n}\right\|_{2}$.
4. [10\%] Let g be a nonnegative measurable function on $[0,1]$. Then

$$
\log \int g(t) d t \geq \int \log (g(t)) d t
$$

whenever the right side is defined.
5. [10\%] Let $\left.<A_{n}\right\rangle_{n \in N}$ be a sequence of connected subsete of the topological space X such that $A_{n} \cap A_{n+1} \neq \emptyset$ foe all $n \in N$. Prove that the set $\cup_{n \in N} A_{n}$ is connected.
6. [15\%] Let (X, B, μ) be a finite measure space. Suppose that ν is a measure defined on B such that ν is absolutely continuous with respect to μ and such that $\nu(X)$ is finite. Let g be the Radon-Nikodym defivative of ν with respect to μ. Prove that $\int_{X} f d \nu=\int_{X} f g d \mu$.
7. $[15 \%]$ Let $f \in L^{2}[0,1]$ and suppose that for each q such that $1<q<\infty, \quad\left|\int_{0}^{1} f g\right| \leq\|g\|_{q}$ for every $g \in C[0,1]$.
a. Prove that $f \in \cap_{1<p<\infty} L^{p}[0,1]$.
b. Is $f \in L^{\infty}[0,1]$? Explain your answer.
8. [10\%] Find the Hausdorff dimension of $C \times C$, where C is the Cantor Set, by computing the following quantities:

First

$$
\lambda_{\alpha}^{\epsilon}(C \times C)=\inf \sum_{i=1}^{\infty} r_{i}^{\alpha},
$$

where $<r_{i}>$ are radii of sequence of balls $<B_{i}>$ that covers $C \times C$ and for which $r_{i}<\epsilon$.
Second,

$$
m_{\alpha}(C \times C)=\lim _{\epsilon \rightarrow 0} \lambda_{\alpha}^{\epsilon}(C \times C) .
$$

Finally, Hausdorff dimension of $C \times C$ is $\inf \left\{\alpha: m_{\alpha}(C \times C)=\infty\right\}$.

