1．（i）Show that the nontrivial fixed point of the equation $9 x=x^{3}, x \in$
$[0, \infty]$ is unstable，that is you cannot find the nontrivial fixed point by using the fixed point iteration $9 x_{k+1}=x_{k}^{3}$ with arbitrary $x_{0} \neq 3 \in[0, \infty] .10 \%$
（i）Please develop a new fixed iteration method such that the non－ trivial fixed point of Problem 1 ．（i）is stable， 10%
2．（i）Develop a numerical method to compute the transcendental number
π if there is no internal trigonometric function in your calculator．
10\％
（i）Give a brief error analysis of the method you proposed， 10%
3．Let $f \in C^{3}(a, b)$ and $\left|f^{\prime \prime \prime}(x)\right|<M$ for $x \in(a, b)$ ．Consider a centered difference formula to be an approximation of $f^{\prime \prime}(x)$ ，i．e．，
$f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}, x \in(a, b)$
Show that the centered difference formula is numerical unstable，i．e．， the error function $\boldsymbol{e}_{\boldsymbol{x}},(\mathrm{h})$ which is defined by the difference of the deriva－ tive $f^{\prime}(x)$ and the approximation formula satisfies

$$
e_{x}(h) \leq \frac{\varepsilon}{h}+\frac{h^{2}}{6} M
$$

where $\quad \varepsilon=\max \{|f(x+h)-f \lambda(f(x+h))|,|f(x-h)-f \lambda(f(x-h))|\}$ ．

4．Show that there is a unique quadratic function pa satisfying the conditions

$$
p_{2}(0)=a_{0}, \quad p 2(l)=a_{1} \quad \text { and } \int_{0}^{1} p_{2}(x) d x=\bar{a}
$$

with given $a_{0,} a_{1}$ and $\bar{a} .10 \%$
5．Consider the nonlinear integral equation

$$
u(t)=\int_{0}^{1} k(t, s, u(s)) d s
$$

over the space $U=C[0,1]$ ．Assume $K \in \mathbf{C}([0,1] \times[0,1] \times \operatorname{IR})$ and is con－ tinuously differentiable with respect to its third argument．Introducing an operator $F: U \rightarrow U$ through the formula

$$
F(u)(t)=u(t)-\int_{0}^{1} k(t, s, u(s)) d s, t \in[0,1]
$$

the integral equation can be written in form $F(u)=0$ ．
（i）Describe a Newton－type method to solve the nonlinear integral equation， 10%
（i）Explore sufficient conditions for the convergence of the Newton－ type method， 10%
6．Is it possible to use $a f(x+h)+b f(x)+c f(x-h)$ with suitably chosen
coefficients a, b, c to approximate $f^{\prime \prime \prime}(x)$ ？How many function values are needed to approximate $f^{\prime \prime \prime}(x) ? 10 \%$
7. (i) Describe the prototype projection method for solving the linear system $A x=b$, where A is an $n \times n$ matrix and b is an n vector. 10\%
(ii) Let x be the approximate solution obtained from a projection process onto K and orthogonal to $L==A K$.. Define $\tilde{r}=b-A \tilde{x}$. Show that $\|\tilde{r}\|_{2} \leq\left\|r_{0}\right\|_{2}$, where $r_{0}=b-A x_{0}$ and x_{0} is an initial guess for the projection method. 5%
(iii) Let A be symmetric positive definite and $L==K$. Show that $\|\tilde{d}\|_{\mathrm{A}}<\left\|d_{0}\right\|_{\mathrm{A}}$, where $\tilde{d}=x_{*}-\tilde{x}, d_{0}==x_{*}-x_{0}$, and $x_{*}=A^{-1} b$.
Here $\|d\|_{\mathrm{A}}=\sqrt{d^{T} A d}$. (5\%)

