Qualified Examination: Functional Analysis

Feb 21.2003

Do all problems. (E: easy. M: moderare. D:difficult).

- 1. (15) (M) Prove that the space $L^{1}(R)$ is not reflexive.
- 2. (20) (E) Consider the operator A defined by

 $Af(x) = \int K(x,y)f(y)dy \dots (*)$ from L^r(Rⁿ) into L^p(Rⁿ). where $\frac{1}{p} + \frac{1}{r} = 1$, $1 \le p \le \infty$

- (a) Prove that if $K(x,y) \in L^p(\mathbb{R}^n \times \mathbb{R}^n)$, then A is a bounded operator.
- (b) Let *X*, *Y* be bounded closed sets in \mathbb{R}^n . Denote by μ the Lebesgue measure. Prove that if K(x, y) is continuous on $X \times Y$, then the operator *A* defined by (*) is a compact operator from $L^r(Y, \mu)$ into $L^p(X, \mu)$
- 3. (15) (M) Let Y be a finite dimensional linear subspace of a normed space X. Show that Y must be closed.
- 4. (20) (E) Let X be a normed linear space, and let X^* be its dual with the norm $||X^*|| = \sup\{|f(x)| : f \in X^*, x \in X, ||x|| \le 1\}$.
 - (a) Prove that X^* is a Banach space.

operator.

(b) Prove that for each $x \in X$, the mapping f f(x) is a bounded linear functional on X^* with norm $||\mathbf{x}||$.

5. (15) (E) Let *H* be a separable Hilbert space, and let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis of *H*. *T*: *H H* is a bounded operator with $\sum_{n=1}^{\infty} ||Te_n||^2 < \infty$ Prove that *T* is a compact

6. (15) (D) Use the Fourier transform method to show that if $r = \{x, y, z\}$, then the equation $u_{xx} + u_{yy} + u_{zz} = -q(x, y, z),$

where q is a continuous, positive function on R^3 , has the formal solution

$$u(r) = \frac{1}{4\pi} \int_{R^3} \frac{q(s)}{\|s - r\|} ds.$$