Functional Analysis Qualified Examination (Fall, 2002)

- 1. (a) Suppose *M* is a closed subspace of a normed linear space *X* such that $\dim X/M < \infty$. Prove that M + N is closed for every subspace *N*.
 - (b) Give an example of two closed subspaces M and N of a normed linear space X such that M + N is not closed.
- 2. Let X be compact and suppose that S is a Banach subspace of C(X). If E is a closed subset of X such that for every g in C(E) there is an f in S with $f|_E = g$, show that there is a constant c > 0 such that for each g in C(E), there is an f in S with $f|_E = g$ and max{ $|f(x)| : x \in X } \le cmax{<math>|g(x)|: x \in E$ }.
- 3. Suppose X is an infinite-dimensional normed linear space and $S = \{x \in X : ||x|| = 1\}$. Show that
 - (a) the weak closure of *S* is $\{x \in X : ||x|| \le 1\}$;
 - (b) $\{x \in X : ||x|| \le 1\}$ is not compact.
- 4. Show that
 - (a) In $L^p\{0,1\}$, $1 , every x with <math>||\mathbf{x}|| = 1$ is an extreme point of the unit sphere $S = \{x : ||\mathbf{x}|| \le 1\}$.
 - (b) In $L^{\infty}[0,1]$ the extreme points of the unit sphere are those x such that |x(t)| = 1 a.e.
 - (c) The unit sphere in L^{I} [0, 1] has no extreme points.
 - (d) $L^{1}[0,1]$ is not the dual of any normed linear space.
- 5. Let (X, Ω, μ) be a (r-finite measure space and for $\phi \in L^{\infty}(\mu)$ let

 $M_{\phi}: L^2(\mu) \to L^2(\mu)$

be the multiplication operator defined as

$$M_{\phi}(f)(t) = \phi(t)f(t)$$
 for $f \in L^{2}(\mu)$.

(a) Give necessary and sufficient conditions on (X, Ω , μ) and ϕ for M_{ϕ}

to be

(b) Find $\sigma(M_{\phi})$ (the spectrum of M_{ϕ}).