## 分析通論（清土班）

1．（ $15 \%$ ）If $f(x)$ is absolutely continuous in $[a, b]$ ，prove that $|f(x)|^{\mathrm{p}}, p>0$ is absolutely continuous in $[a, b]$ ．

2．（15\％）Let $f$ be a real－valued，measurable function on $\mathbf{R}$ that satisfies the equa－ tion

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y$ in $\mathbf{R}$ ．Prove that $f(x)=A x$ for some number $A$ ．

3．$(20 \%)$ Prove or disprove
（a）The Dirichlet function is measurable．
（b）If $f(x)$ is Riemann integrable in $[a, b]$ ，then $f(x)$ must be measurable．
（c）There exist non－measurable functions．
4．$(15 \%)$ Prove or disprove．If $f_{n} \rightarrow f$ a．e．then $f_{n} \rightarrow f$ in $L^{2}$
5．（20\％）Show that if $f, g \in \mathbf{C}(\mathbf{R} ; \mathbf{C})$ and for all $x ;, f(x+1)=f(x), g(x+1)=g(x)$ ，
then

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g(n x) d x=\left(\int_{0}^{1} f(x) d x\right)\left(\int_{0}^{1} g(x) d x\right)
$$

Use this result to show

$$
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} f(x) \sin n x d x=0 \quad, \forall f \in C([0,2 \pi] ; \mathfrak{R})
$$

6．（15\％）If $f \in L\left(\mathbf{R}^{\mathbf{n}}\right)$ and $g$ is bounded and uniformly continuous on $\mathbf{R}^{\mathbf{n}}$ ，then the convolution $f * g$ is bounded and uniformly continuous on $\mathbf{R}^{\mathbf{n}}$ ．

