Algebra Ph.D. Qualifying Examination Feb 2003

Answer all the problems and show all your works.

- 1. (20%) Let *G* be a group of order 56 with no element of order 14. Prove that
 (i) the Sylow 7-subgroups of *G* are not normal in *G*, and
 (ii) the Sylow 2-subgroup of *G* is normal in *G* and is isomorphic to Z₂×Z₂×Z₂? where Z₂ is a group of order 2.
- 2. (15%)Let *p* be a prime.

(i) Show that every group of order p^2 is abelian.

(ii) Suppose that G is an non-abelian group of order p^3 . Show that the center of G is riontrivial.

- 3. (10%) (i) Show that every group can be embedded into a symmetric group S_n for some *n*.
 - (ii) Show that every group can be embedded into an alternating group A_n for some n.
- 4. (10%) Let *D* be a principal ideal domain. Show that *I* is prime ideal in *D* if and only if it is a maximal ideal.
- 5. (10%) Let G be a group. Show that End G is a ring if and only if G is abelian, where End G is the set of all homomorphisms from G to G and the addition and the multiplication on End G are defined as follows:

(f + g)(a) = f(a)g(a), and $f \bullet g(a) = f(g(a))$,

for any *f*, $g \in$ End *G* and $a \in G$

- 6. (10%) Let F be a finite field. Show that the order of F is a power of a prime.
- 7. (10%) Let Q be the field of all rational numbers. Show that $Q(\sqrt{2},\sqrt{3}) = Q(\sqrt{2}+\sqrt{3})$.
- 8. (15%) Let *F* be a field and *A*, *B* and *C* F-vector spaces. Show that $(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$

as F-vector spaces.

THE END