機率論

(碩士班)

91.9.20 PM 1:00 - 4:00

1. Let $(An)n \ge 1$ be an independent sequence of sets with $\sum_{n=1}^{\infty} P(An) = +\infty$. Find $\lim_{n \to +\infty} \frac{\sum_{j=1}^{n} 1A_j(w)}{\sum_{j=1}^{n} P(A_j)} \quad \text{where } 1_A(w) = \begin{cases} 1, w \in A \\ 0, w \notin A \end{cases}$ and prove it. (25%)2. Let Xn have the binomial distribution with parameter (n, p_n) , and suppose that $np_n \rightarrow \lambda \ge 0$. Prove that Xn converges in distribution to the Poisson d.f. with parameter λ . (25%) 3. Let $(X_n)_{n \ge 1} X$ be random variables and suppose that $X_n \to X$ in probability. L1 Show that $f\{X_n\} \xrightarrow{L^1} f(X)$ for all bounded and uniformly continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ (25%) 4. Let $(X_n)_{n\geq 1}$ be independent, identically distributed with mean 0 and variance σ^2 , $0 < \sigma^2 < +\infty$, Let $S_n = X_1 + X_2 + \dots + X_n$. Find $\lim_{n \to +\infty} E(\frac{\mathfrak{d}_n}{\sqrt{n}})$ (25%)and prove it.