91年度碩士班資格考，科目：數值分析 題目共七題有二頁，總分：100

2002年9月20日

1．Let $f \in \underline{C}^{3}(a, b)$ and $\left|f^{\prime \prime \prime}(x)\right|<M$ for $x \in(a, b)$ ．Consider a centered difference formula to be an approximation of $f^{\prime}(x)$ ，i．e．，
$\mathrm{f}^{\prime}(\mathrm{x}) \approx \frac{f(x+h)-f(x-h)}{2 h}, x \in(a . b)$
Show that the centered difference formula is numerical unstable，i．e．， the error function $e_{x},(h)$ which is defined by the difference of the deriva－ tive $f^{\prime}(x)$ and the approximation formula satisfies
$e_{x}(h) \leq \frac{\varepsilon}{h}+\frac{h^{2}}{6} M$ ，
where $\quad \varepsilon=\max \{|f(x+h)-f \lambda(f(x+h))|,|f(x-h)-f \lambda(f(x-h))|\}$ ．
10\％
2．Show that there is a unique quadratic function $P t$ satisfying the conditions

$$
p_{2}(0)=a_{0}, \quad p_{2}(\mathrm{l})=a_{1} \quad \text { and } \int_{0}^{1} p_{2}(x) d x=\bar{a}
$$

with given a_{0}, a_{1} and $\bar{a} .10 \%$
3．Consider the nonlinear integral equation

$$
u(t)=\int_{0}^{1} k(t, s, u(s)) d s
$$

over the space $U==C[0,1]$ ．Assume $k \in \mathrm{C}([0,1] \times[0,1] \times \mathrm{IR})$ and is con－ tinuously differentiable with respect to its third argument．Introducing an operator $F: U \rightarrow U$ through the formula

$$
F(u)(t)=u(t)-\int_{0}^{1} k(t, s, u(s)) d s, \quad t \in[0,1]
$$

the integral equation can be written in form $F(u)=0$ ．
（i）Describe a Newton－type method to solve the nonlinear integral equation， 10%
（ii）Explore sufficient conditions for the convergence of the Newton－ type method， 10%
4．Is it possible to use $a f(x+h)+b f(x)+c f(x-h)$ with suitably chosen coefficients a，b, c to approximate $f^{\prime \prime \prime}(x)$ ？How many function values are needed to approximate $f^{\prime \prime \prime}(x) ? 10 \%$
5．Show that the $Q R$ algorithm applied to a singular unreduced upper Hes－ senberg matrix must converge in one step．Can you determine the total number of zero eigenvalues at this moment？ 10%
6. (i) Show that if $A=M-N$ is singular, then we can never have $\rho\left(M^{-1} N\right)<1$ even if M is nonsingular, 10%
(ii) Compare $\rho\left(M_{J}^{-1} N_{J}\right)$ and $\rho\left(\mathrm{M}_{G}^{-1} \mathrm{~N}_{\mathrm{G}}\right)$ for the matrix

$$
A=\left[\begin{array}{ccc}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right]
$$

Here $A=M_{J}-N_{J}$ and $A=M_{G}-N_{G}$ denote basic splits corresponding to Jacobi and Gauss-Seidel iterations, respectively, 10%
7. (i) Describe the advantage of Conjugate Gradient (CG) method for a symmetric positive definite linear system, 10%
(ii) Explain the role of the preconditioner for the Precondition Conjugate Gradient (PCG) method. Please explain why we need to consider a preconditioner for the CG-iteration. What is the advantage and how to choose a suitable one? 10%

