分析通論䃇地

1．（ 15% ）Prove that tht set $[0,1]$ is not countable by measure theory．Can yon prove this fact by Cantor＇s diagonal argument？

2．（ 15% ）Let f be a real－valued，measurable function on \mathfrak{R} that satisfies the equa－ tion

$$
f(x+y)=f(x)+f(y)
$$

for all x, y in \mathfrak{R} ．Prove that $f(x)=A_{x}$ for some number A ．（Hint：Prove this when f is continuous by examining f on the rationals．）

3．（15\％）Show that the function $\frac{\sin x}{x}$ is Riemann integrable on $(-\infty, \infty)$ but that its Lebesgue integral does not exists．

4．（10\％）If $f \in L(0,1)$ ，show that $\mathrm{x}^{\mathrm{k}} f(x) \in L(0,1)$ for $k=1,2, \ldots \ldots$ and

$$
\int_{0}^{1} x^{k} f(x) d x \rightarrow 0
$$

5．（15\％）Find the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x
$$

You need to figure out the dominating function．
6．（ 15% ）Let $p>0$ and $f \in L^{p}(\mu)$ where $f \geq 0$ ，and let $f_{n}=\min (f, n)$ ．show that $f_{n} \in L^{p}(\mu)$ and $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{p}=0$

7．(15%) Let $f(x, y)=\frac{x y}{\left(x^{2}+y^{2}\right)^{2}},(x, y) \in[-1,1] \times[-1,1]$ defining $f(0,0)=0$
Show that the iterated integrals of f over the square are equal

$$
\int_{-1-1}^{1} \int_{-1}^{1} f(x, y) d x d y=\int_{-1}^{1} \int_{-1}^{1} f(x, y) d y d x=? ?
$$

Is f integrable？

