分析通論(碩士班)

91.9.20 AM 9:00-12:00

- 1. (15%) Prove that tht set [0,1] is not countable by measure theory. Can you prove this fact by Cantor's diagonal argument?
- 2. (15%) Let f be a real-valued, measurable function on \Re that satisfies the equation

$$f(x + y) = f(x) + f(y)$$

for all x, y in \Re . Prove that $f(x) = A_x$ for some number A. (Hint: Prove this when f is continuous by examining f on the rationals.)

3. (15%) Show that the function $\frac{\sin x}{x}$ is Riemann integrable on $(-\infty, \infty)$ but that its Lebesgue integral does not exists.

4. (10%) If
$$f \in L(0, 1)$$
, show that $x^k f(x) \in L(0, 1)$ for $k = 1, 2, ...$ and

$$x^k f(x) dx \to 0$$

5. (15%) Find the limit

$$\lim_{n\to\infty}\int_0^n (1+\frac{x}{n}) e^{-2x} dx$$

You need to figure out the dominating function.

- 6. (15%) Let p > 0 and $f \in L^{p}(\mu)$ where $f \ge 0$, and let $f_{n} = \min(f, n)$. show that $f_{n} \in L^{p}(\mu)$ and $\lim_{n \to \infty} ||f f_{n}||_{p} = 0$
- 7. (15%) Let $f(x,y) = \frac{xy}{(x^2 + y^2)^2}$, $(x,y) \in [-1, 1] \times [-1, 1]$ defining f(0,0) = 0

Show that the iterated integrals of f over the square are equal

$$\int_{-1-1}^{1} \int_{-1-1}^{1} f(x, y) dx dy = \int_{-1-1}^{1} \int_{-1-1}^{1} f(x, y) dy dx = ??$$

Is f integrable?