Algebra Qualifying Examination, September 2002

Answer all the problems and show all your works.

- 1. (15%) Let G be a nonabelian group of order 6. Show that G is isomorphic to S_3 , the symmetry group of degree 3.
- 2. (15%) Let *G* be a group of order 56. Suppose that *G* has no element of order 14. Show that the Sylow 2-subgroup of *G* is normal in *G*.
- 3. (20%) Let *G* is a group of order 231. Show that the Sylow 11-subgroup of *G* is in the center of *G*.
- 4. (15%) Let R be a commutative ring with identity and

 $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R\{x\}.$

Show that f(x) is a unit in R[x] if and only if a_0 is a unit in R and a_1, \dots, a_n are nilpotent elements in R.

- 5. (10%)Let R be a integral domain and $a, b \in R$. Suppose $a^n = b^n$ and $a^m = b^m$, where m, n are positive integers and (m, n) = 1. Prove that a = b.
- 6. (10%)An integral domain *D* is called a Euclidean domain if there is a function $d: D \setminus \{0\} \to \mathbf{Z}^+$ such that
 - (1). $d(a) \le d(ab)$ for any $a, b \in D\{0\}$ and
 - (2). for any $a \in D$ and $b \neq 0$, there are $q, r \in D$ such that a = qb + r, where d(r) < d(b) or r = 0.

Show that d(a) == d(e) if and only if a is a unit.

7. (15%) (i) Show that a finite extension E of F is also an algebraic extension of F.
(ii) Let K be a field and E an extension of K. Suppose u, v∈ E are roots of an irreducible polynomial f(x) £∈ K[x]. Show that there is a unique field isomorphism σ: K(u)- K(v)

such that $\sigma | K = id_K$ and $\sigma (u) = v$.

The End