PhD Qualify Exam, PDE, Sep. 21, 2001

Show all works

1.[10\%] Verify that $\quad u(x, t)=\frac{1}{2 c} \int_{0}^{t} \int_{x-c t+c s}^{x+c t-c s} f(y, s) d y d s \quad$ is the solution of

$$
\left\{\begin{array}{c}
u_{t t}+c^{2} u_{x x}=f \tag{1}\\
u(x, 0)=u_{t}(x, 0)=0 .
\end{array}\right.
$$

2.[10\%] Let $\phi(x)$ be a bounded continuous function for $-\infty<x<\infty$. Define the function $u(x, t)=\frac{1}{\sqrt{4 \pi}} \int_{-\infty}^{\infty} e^{-p^{2} / 4} \phi(x-p \sqrt{t}) d p$. Assume that the function u is C^{∞} for $-\infty<x<\infty$ and $0<t<\infty$. (Take it for granted.) Show that $\lim _{t \rightarrow 0^{+}} u(x, t)=\phi(x)$.
3.(a) [10%]Let D be an open disk in R^{2} of radius r and center Q. Suppose that u is harmonic in D and that $\iint_{D}|u|^{2} d x d y=K<\infty$. Prove that

$$
|u(Q)| \leq \frac{1}{r}\left(\frac{K}{\pi}\right)^{\frac{1}{2}} .
$$

Note: You may not assume that u is continuously extendable to the closure of D. Hint: Consider $\iint[u-u(Q)]^{2} d x d y$.
(b) $[10 \%]$ Suppose that u is harmonic on all of R^{2}, and that $\iint_{R^{2}}|u|^{2} d x d y<$ ∞. Prove that u is constant.
4. [10\%] State a method of finding the Green's function for the eighth of a ball,

$$
D=\left\{x^{2}+y^{2}+z^{2}<a^{2}: x>0, y>0, z>0\right\} .
$$

5. Let u be a solution of the wave equation in all of $R^{3} \times R$. Suppose that $a>0$ and that $u(x, 0)=u_{t}(x, 0)=0$ for $|x| \geq a$.
(a) $[10 \%]$ Show that $u(x, t)=0$ in the double cone $|x| \leq|t|-a$ for $|t| \geq a$.
(b) [10\%] Show that there is a constant $C>0$ such that

$$
\int_{R^{3}} u^{2}(x, t) d x \leq C, \quad \text { for all } t>0
$$

(Hint: Show that there is a finite energy solution of $w_{t t}-\Delta w=0$ such that $w_{t}=u$.)
6. Let Ω be an open bounded subset of R^{n}, with smooth boundary. Consider the boundary value problem

$$
\left\{\begin{array}{ccc}
-\Delta u+\lambda u & =f & \text { in } \Omega \tag{2}\\
\frac{\partial u}{\partial n}+\gamma u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\gamma>0$.
(a) [5\%] Give a weak formulation of this problem.
(b) [5\%] Suppose that there is a weak solution for the problem (2), which is smooth in $\bar{\Omega}$. Show that this solution satisfies (2) in the usual (strong) sense. (Recall: We say that v is a weak derivative of u if $(v, \phi)=-\left(u, \phi^{\prime}\right)$ for all test function ϕ.)
7. Suppose that $g \in C^{1}(R)$ and that $M \equiv \sup _{R}|g(x)|<\infty$. Consider the initial value problem

$$
\left\{\begin{array}{c}
u_{t}+u^{2} u_{x}=0 \quad \text { for } x \in R, t>0 \tag{3}\\
u(x, 0)=g(x) \quad \text { for } x \in R .
\end{array}\right.
$$

(a) $[10 \%]$ Show that a C^{1} solution $u(x, t)$ satisfies $|u(x, t)| \leq M$ for as long as the solution exists.
(b) $[10 \%]$ Suppose that at some $x_{0} \in R, g\left(x_{0}\right) g^{\prime}\left(x_{0}\right)<0$. Show that a C^{1} solutioin breaks down in finite time. (Hint: study the behaviour of u_{x} along characteristics.)

