GENARAL ANALYSIS

(PhD Program Qualify Exam: Feb. 23, 2001)

I. (15%) Given $a_n \in \{0, 1, 2, 3, 4\}$ and $b_n \in \{0, 1, 2, 3, 4, 5, 6\}$ and define the set P by

$$P = \left\{ (x, y) \in [0, 1] \times [0, 1] \, \big| \, x = \sum_{n=1}^{\infty} \frac{a_n}{5^n}, \quad y = \sum_{n=1}^{\infty} \frac{b_n}{7^n} \\ a_n \in \{0, 2\}, b_n \in \{1, 3, 5\} \right\}$$

What does P look like? Compute the Lebesgue measure of P. Is P open, closed, compact, perfect? Can you evaluate the Hausdorff dimension of P?

- II. (15%) Given $x = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$ with $|x| = (x_1^2 + x_2^2 + \dots + x_n^2)^{1/2}$. Show that the function $\rho(x)$ defined in \mathbf{R}^n by $\rho(x) = \exp(\frac{1}{|x|^2 1})$ if |x| < 1 and $\rho(x) = 0$ if |x| > 1 belongs to $C_c(\mathbf{R}^n)$, the space of infinitely differentiable with compact support. Compute the integral $\int_{\mathbf{R}^n} \rho(x) dx$.
- III. (15%) If the function f(x) is absolutely continuous on [a, b], then the length s of the curve y = f(x) can be computed according to the formula

$$s = \int_a^b \sqrt{1 + |f'|^2(x)} dx$$

(You need to start from the definition of arc-length!)

IV. (20%) Let Ω be a bounded domain in \mathbb{R}^n , If u is a measurable function on Ω such that $|u|^p \in L^1(\Omega)$ for some $p \in \mathbb{R}$, we define

$$\Phi_p(u) \equiv \left[\frac{1}{|\Omega|} \int_{\Omega} |u|^p dx\right]^{1/p}$$

where $|\Omega|$ denotes the measure of Ω . Show that

(a)
$$\lim_{p \to \infty} \Phi_p(u) = \sup_{\Omega} |u|;$$

(b)
$$\lim_{n \to -\infty} \Phi_p(u) = \inf_{\Omega} |u|;$$

(c)
$$\lim_{p \to 0} \Phi_p(u) = \exp\left[\frac{1}{|\Omega|} \int_{\Omega} \log |u| dx\right].$$

 $\begin{array}{ll} (d) & \Phi \text{ is logarithmically convex in } 1/p, \text{ i.e. if } p \leq q \leq r \text{ and} \\ & 1/q = \lambda/p + (1-\lambda)/r \quad \text{then} \quad \log \Phi_q \leq \lambda \log \Phi_p + (1-\lambda) \log \Phi_r \end{array}$

- V. (15%) Give $1 \le p < \infty$ and a sequence $\{f_n\}_{n=1}^{\infty} \subset L^p(\Omega)$ and $f \in L^p(\Omega)$.
 - (a) Can you define the weak convergence of f_n to f in $L^p(\Omega)$ (denoted by $f_n \stackrel{w}{\rightharpoonup} f$).
 - (b) For $1 show that <math>f_n \xrightarrow{w} f$ in $L^p(\Omega)$ if and only if

 $\sup_n \|f_n\|_{L^p(\Omega)} < \infty$ and $\int_E f_n dx \to \int_E f dx$

for all bounded measurable set $E \subset \Omega$. Is it true for p = 1?

VI. (20%) Let (X, μ) be a measure space, and let $1 \le p \le \infty$ and C > 0. Suppose K is a measurable function on $X \times X$ such that $\int_X |K(x, y)| d\mu(y) \le C$ for all $x \in X$ and $\int_X |K(x, y)| d\mu(x) \le C$ for all $y \in X$. Define the function Tf by

$$Tf(x) \equiv \int_X K(x,y) f(y) d\mu(y) \, .$$

- (a) Show that Tf is well defined almost everywhere and is in $L^p(X)$, and $||Tf||_{L^p(X)} \leq C||f||_{L^p(X)}$. (Hint: Hölder inequality)
- (b) Use (a) to show that if $f \in L^1(\mathbf{R}^n)$ and $g \in L^p(\mathbf{R}^n)$, $1 \le p \le \infty$, then the convolution $f * g \in L^p(\mathbf{R}^n)$ and $||f * g||_{L^p(\mathbf{R}^n)} \le ||f||_{L^1(\mathbf{R}^n)} ||g||_{L^p(\mathbf{R}^n)}$
- (c) Let $\rho_{\varepsilon}(x) \equiv \varepsilon^{-n} \rho(x/\varepsilon)$, ρ being the same as problem II, show that if $f \in L^{\gamma}(\mathbf{R}^n)$ $(1 \leq \gamma < \infty)$ then $f * \rho_{\varepsilon} \to f$ in $L^{\gamma}(\mathbf{R}^n)$ strongly.