GENARAL ANALYSIS

(PhD Program Qualify Exam: Feb. 23, 2001)
I. (15\%) Given $a_{n} \in\{0,1,2,3,4\}$ and $b_{n} \in\{0,1,2,3,4,5,6\}$ and define the set P by

$$
\begin{aligned}
& P=\left\{(x, y) \in[0,1] \times[0,1] \left\lvert\, x=\sum_{n=1}^{\infty} \frac{a_{n}}{5^{n}}\right., \quad y=\sum_{n=1}^{\infty} \frac{b_{n}}{7^{n}}\right. \\
& \left.a_{n} \in\{0,2\}, b_{n} \in\{1,3,5\}\right\}
\end{aligned}
$$

What does P look like? Compute the Lebesgue measure of P. Is P open, closed, compact, perfect? Can you evaluate the Hausdorff dimension of P ?
II. (15\%) Given $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbf{R}^{n}$ with $|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}$. Show that the function $\rho(x)$ defined in \mathbf{R}^{n} by $\rho(x)=\exp \left(\frac{1}{|x|^{2}-1}\right)$ if $|x|<1$ and $\rho(x)=0$ if $|x|>1$ belongs to $C_{c}\left(\mathbf{R}^{n}\right)$, the space of infinitely differentiable with compact support. Compute the integral $\int_{\mathbf{R}^{n}} \rho(x) d x$.
III. (15\%) If the function $f(x)$ is absolutely continuous on $[a, b]$, then the length s of the curve $y=f(x)$ can be computed according to the formula

$$
s=\int_{a}^{b} \sqrt{1+\left|f^{\prime}\right|^{2}(x)} d x
$$

(You need to start from the definition of arc-length!)
IV. (20\%) Let Ω be a bounded domain in \mathbf{R}^{n}, If u is a measurable function on Ω such that $|u|^{p} \in L^{1}(\Omega)$ for some $p \in \mathbf{R}$, we define

$$
\Phi_{p}(u) \equiv\left[\frac{1}{|\Omega|} \int_{\Omega}|u|^{p} d x\right]^{1 / p}
$$

where $|\Omega|$ denotes the measure of Ω. Show that
(a) $\lim _{p \rightarrow \infty} \Phi_{p}(u)=\sup _{\Omega}|u|$;
(b) $\lim _{p \rightarrow-\infty} \Phi_{p}(u)=\inf _{\Omega}|u|$;
(c) $\lim _{p \rightarrow 0} \Phi_{p}(u)=\exp \left[\frac{1}{|\Omega|} \int_{\Omega} \log |u| d x\right]$.
(d) Φ is logarithmically convex in $1 / p$, i.e. if $p \leq q \leq r$ and $1 / q=\lambda / p+(1-\lambda) / r \quad$ then $\quad \log \Phi_{q} \leq \lambda \log \Phi_{p}+(1-\lambda) \log \Phi_{r}$
V. (15\%) Give $1 \leq p<\infty$ and a sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{p}(\Omega)$ and $f \in L^{p}(\Omega)$.
(a) Can you define the weak convergence of f_{n} to f in $L^{p}(\Omega)$ (denoted by $f_{n} \xrightarrow{w} f$).
(b) For $1<p<\infty$ show that $f_{n} \xrightarrow{w} f$ in $L^{p}(\Omega)$ if and only if

$$
\sup _{n}\left\|f_{n}\right\|_{L^{p}(\Omega)}<\infty \quad \text { and } \quad \int_{E} f_{n} d x \rightarrow \int_{E} f d x
$$

for all bounded measurable set $E \subset \Omega$. Is it true for $p=1$?
VI. (20\%) Let (X, μ) be a measure space, and let $1 \leq p \leq \infty$ and $C>0$. Suppose K is a measurable function on $X \times X$ such that $\int_{X}|K(x, y)| d \mu(y) \leq C$ for all $x \in X$ and $\int_{X}|K(x, y)| d \mu(x) \leq C$ for all $y \in X$. Define the function $T f$ by

$$
T f(x) \equiv \int_{X} K(x, y) f(y) d \mu(y)
$$

(a) Show that $T f$ is well defined almost everywhere and is in $L^{p}(X)$, and $\|T f\|_{L^{p}(X)} \leq C\|f\|_{L^{p}(X)}$. (Hint: Hölder inequality)
(b) Use (a) to show that if $f \in L^{1}\left(\mathbf{R}^{n}\right)$ and $g \in L^{p}\left(\mathbf{R}^{n}\right), 1 \leq p \leq \infty$, then the convolution $f * g \in L^{p}\left(\mathbf{R}^{n}\right)$ and $\|f * g\|_{L^{p}\left(\mathbf{R}^{n}\right)} \leq\|f\|_{L^{1}\left(\mathbf{R}^{n}\right)}\|g\|_{L^{p}\left(\mathbf{R}^{n}\right)}$
(c) Let $\rho_{\varepsilon}(x) \equiv \varepsilon^{-n} \rho(x / \varepsilon), \rho$ being the same as problem II, show that if $f \in L^{\gamma}\left(\mathbf{R}^{n}\right)(1 \leq \gamma<\infty)$ then $f * \rho_{\varepsilon} \rightarrow f$ in $L^{\gamma}\left(\mathbf{R}^{n}\right)$ strongly.

