PhD Qualify Exam, Analysis, Mar. 3, 2000

Show all works

1. (a) [5%] Please state the Hahn-Banach Theorem.

 $(\mathbf{b})[5\%]$ Please state the Hahn Decomposition Theorem.

2. [10%] Find a representation for the bounded linear functionals on l^p .

3.[10%] Let $\langle f_n \rangle$ be a sequence of functions in L^p , $1 \langle p \rangle \langle \infty$, which converge almost everywhere to a function f in L^p , and suppose that there is a constant M such that $||f_n|| \leq M$ for all n. Then for each function g in L^q we have

$$\int fg = \lim \int f_n g.$$

Is this result true for p = 1?

4. [10%] Let g be a nonnegative measurable function on [0, 1]. Then

$$\log \int g(t) dt \ge \int \log(g(t)) dt$$

whenever the right side is defined.

5. Suppose that $f: (0,\infty) \to R$ is measurable.

(a)[5%] Prove that if f is integrable and $\epsilon > 0$, then there is a measurable set A in $(0, \infty)$ such that $m(A) < \epsilon$ and $\lim_{x \to \infty} f^{(A)}(x) = 0$, where $f^{(A)}(x) = 0$ if $x \in A$; f(x) if $x \notin A$.

(b)[10%] Prove that if f is integrable on $[0, \infty)$, then for every $\alpha > 1$ there is a set A_{α} in $(0, \infty)$ such that $m(A_{\alpha}) = 0$ and $\sum_{n=1}^{\infty} f(n^{\alpha}x)$ converges for all $x \notin A_{\alpha}$. (Note: this result is unrelated to part (a).)

(c)[5%] Does the converse of part (b) hold? Prove it or give a counterexample.

6. For $n = 0, 1, 2, ..., let f_n(x) = x^n$.

(a)[10%] Let L and L' be bounded linear functionals on C([0,1]) such that $L(f_n) = L'(f_n)$ (n = 0, 1, 2, ...). Show that L = L'.

(b)[10%] Let L be a bounded linear functional on C([0,1]) such that $L(f_n) = \frac{1}{n+1}$ (n = 0, 1, 2, ...). Let $f(x) = x^{\frac{1}{3}}$. What is L(f)? (Justify your answer.)

7.[10%] Prove or disprove that the 2π periodic functions whose squares have a well defined improper Riemann integral do not define a complete space.

8.[10%] Find the Hausdorff dimension of $C \times C$, where C is the Cantor Set, by computing the following quantities:

First

$$\lambda^{\epsilon}_{\alpha}(C \times C) = \inf \sum_{i=1}^{\infty} r^{\alpha}_i,$$

where $\langle r_i \rangle$ are radii of sequence of balls $\langle B_i \rangle$ that covers $C \times C$ and for which $r_i < \epsilon$. Second,

$$m_{\alpha}(C \times C) = \lim_{\epsilon \to 0} \lambda_{\alpha}^{\epsilon}(C \times C).$$

Finally, Hausdorff dimension of $C \times C$ is $\inf \{ \alpha : m_{\alpha}(C \times C) = \infty \}.$