PhD Qualify Exam, Analysis, Oct. 1, 1999

Show all works

1. (a)[5\%] Please state the Radon-Nikodym Theorem.
(b) [5\%] Please state the Fubini Theorem.
(c) [5\%] Please define a Vitali Covering..
(d)[5\%] Please state the Vitali Covering Theorem.
2.(a) [10\%] Let f be a real-valued bounded measurable function on $[a, b]$, take any $r \in R$, and define the function $F:[a, b] \rightarrow R$ by $F(x)=r+\int_{a}^{x} f(t) d t$. Prove that $F^{\prime}=f$ a.e. and specify each place you invoke any form of the Domination Convergence Theorem.
(b) $[10 \%]$ Let $C \subset[0,1]$ be the Cantor ternary set with associated Cantor ternary function f_{C} and associated Canter ternary measure μ_{C} (defined by : $\left.\mu_{C}(a, b]=f_{C}(b)-f_{C}(a)\right)$. Prove that μ_{C} is a continuous measure, i.e., $\mu_{C}\{x\}=0$ for each x, and then show that $U \cap C$ is uncountable for every open set U for which $U \cap C \neq \phi$.
2. (a) [10\%] Given $f \in L^{1}[0,1]$. Prove that for all $\epsilon>0$ there is a $\delta>0$ such that for every $A \in \mathcal{M}$, for which $m(A)<\delta$, we can conclude that $\int_{A}|f(t)| d m(t)<\epsilon$.
(b) Let X be a compact Hausdorff space and let $C(X)$ be the real Banach space of all real-valued continuous functions on X with sup-norm. Prove the following:
(i) [5\%] If $L: C(X) \rightarrow R$ is a positive linear functional, then L is continuous.
(ii)[5\%] If $L: C(X) \rightarrow R$ is a continuous linear functional and $\left\{f_{n}\right\} \subset C(X)$ is a sup-norm bounded sequence which tends pointwise to a function $f \in C(X)$, then $\lim L\left(f_{n}\right)=L(f)$.
3. (a) [10\%] Assume the inequality

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

holds for all functions $f \in L^{p}$ and $g \in L^{q}$. Show that the relation between p and q is $\frac{1}{p}+\frac{1}{q}=1$. (Hint: Consider $f_{\lambda}(x)=f(\lambda x)$ and $\left.g_{\lambda}(x)=g(\lambda x).\right)$
(b)[10\%] Assume that $f_{n} \rightarrow f$ in measure. (Definition of convergence in measure: for each $\epsilon>0$, there is an $N>0$ such that $\mu\left\{x:\left|f_{n}(x)-f(x)\right|>\epsilon\right\}<\epsilon$, for all $n>N$.) Assume that $\left|f_{n}\right| \leq g, g \in L^{p}(\mu), f \in L^{p}(\mu)$, and μ is a σ-finite measure on X. Prove that $f_{n} \rightarrow f$ in $L^{P}(\mu)$.
5. Suppose that $x_{1}, x_{2}, x_{3}, \cdots$ is a sequence of points in the unit interval $[0,1]$ such that for every continuous real valued function f defined on $[0,1], \lim \frac{1}{n}\left[f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right]$ exists. Define this limit to be $L(f)$.
(a) [10\%] Prove that there is a positive measure μ, defined on the σ-algebra of all Borel sets of $[0,1]$, such that

$$
L(f)=\int_{[0,1]} f d \mu
$$

for all continuous functions f. State any theorems you use.
(b) [10%] Prove that the measure μ in part (a) is Lebesgue measure if and only if for every integer $k \geq 1, L\left(x^{k}\right)=\frac{1}{k+1}$, i.e.,

$$
\frac{1}{n}\left(x_{1}^{k}+\cdots+x_{n}^{k}\right) \rightarrow \frac{1}{k+1} \quad \text { as } \quad n \rightarrow \infty
$$

State any theorems you use.

