PhD Qualify Exam, Analysis, Feb. 26, 1999

Answer any Five questions and only five. Show all works

1. Let $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Let $f \in L^{p}([0,1])$ and let $\left\{f_{n}\right\}$ be a sequence in $L^{p}([0,1])$ so that $\left\|f_{n}\right\|_{p} \leq 1$ for all n and $\lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f$ for every measurable subset E of $[0,1]$.
(a) $[10 \%]$ Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} g=\int_{0}^{1} f g$ for every $g \in L^{q}([0,1])$.
(b) [10\%] Does $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ a.e. $x \in[0,1]$? Prove it or give a counterexample.
2.[20\%] Let X be a metric space. A sequence $\left\{f_{n}\right\}$ of real-value functions on X is said to converge continuously to the function $f: X \longrightarrow R$ at the point $x \in X$ if for every sequence $\left\{x_{n}\right\} \subseteq X$ which converges to x one has $\lim _{n \rightarrow \infty} f_{n}\left(x_{n}\right)=f(x)$.
(a) [10\%] Prove that if the sequence $\left\{f_{n}\right\}$ converges continuously to f at every point of X, then f is continuous on X.
(b) [10\%] Prove that if X is compact and if $\left\{f_{n}\right\}$ congerges continuously to f at every point of X, then $\left\{f_{n}\right\}$ converges uniformly on X to f.
2. [20\%] Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of nonnegative measurable functions on R such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ a.e. in x. For each part below, determine whether the additional assumptions made are enough to conclude that $\lim _{n \rightarrow \infty} \int_{R} f_{n}=\int_{R} f$ (including the possibility $\infty=\infty$).

Justify your answer by explaining why it can be applied or by giving a counterexample.
(a) $f_{n}(x) \leq 1$ for all n and x, and $\left\{x: \quad f_{n}(x) \neq 0\right\}$ has finite measure for every n.
(b) $f_{n}(x) \leq f(x)$ for all n and x.
(c) $\lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f$ for every E of finite measure.
4. (a) $[10 \%]$ Assume that $\left\{f_{n}\right\} \longrightarrow f$ uniformly and $\left\{g_{n}\right\} \longrightarrow g$ uniformly. Does $\left\{f_{n} g_{n}\right\} \longrightarrow f g$ uniformly? Prove it or give a counterexample.
(b) $[10 \%]$ Let $\left\{f_{n}\right\}$ be a sequence of absolutely continuous functions and $\left\{f_{n}\right\} \longrightarrow f$ uniformly. Is f absolutely continuous?
5. (a) [10\%] State the Riesz Representation Theorem (for bounded linear functionals on L^{p}).
(b) [10\%] Assume the following inequality holds: $\quad\|f\|_{L^{4}} \leq C\|S \widehat{f}\|_{L^{2}}$,
where C is a constant, S is some function of x, and \widehat{f} denote the Fourier transform. We also take the Parseval formula for granted. $\quad \int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} \widehat{f}(t) \overline{\widehat{g}(t)} d t$ holds for all $f \in L^{2}$ and $g \in L^{2}$. Use Riesz Representation Theorem and Parseval Formula to prove the following inequality. $\quad\left\|\frac{\widehat{g}}{S}\right\|_{L^{2}} \leq C\|g\|_{L^{\frac{4}{3}}}$.
6. (a)[4\%] State the definitions of the following notions: first category and nowhere dense.
(b)[4\%] State the Baire category theorem.
(c) $[12 \%]$ Prove or disprove the following statements.
(i) All sets of first category are nowhere dense.
(ii) All sets of first category in $[0,1]$ have Lebesgue measure less than 1 .
7. [20\%] Define that f_{n} converges weakly to f, where $f, f_{n} \in L^{1}[0,1]$, if $\forall g \in L^{\infty}[0,1]$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left(f_{n}(x)-f(x)\right) g(x) d x=0 .
$$

Given $f, f_{n} \in L^{1}[0,1]$. Prove that f_{n} converges weakly to f if and only if

$$
\sup _{n}\left\|f_{n}\right\|_{1}<\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{E}\left(f_{n}(x)-f(x)\right) d x=0
$$

for every measurable set E.

