PhD Qualify Exam General Analysis

March 2024

- E: Easy, M: Moderate, D: Difficult
 - 1. (M, 15 points) (September 2005) Let $\{f_n\}$ be a sequence of functions in $L^p[0, 1]$, 1 , which converge almost everywhere to a function <math>f in $L^p[0, 1]$, and suppose that there is a constant M such that $||f_n||_p \le M$ for all n. For each function g in $L^q[0, 1]$ and $\frac{1}{p} + \frac{1}{q} = 1$, show that

$$\int_0^1 fg = \lim_{n \to \infty} \int_0^1 f_n g.$$

- 2. (E. 10 points) (September 2008) Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^2} \cos(xt) dx$.
- 3. (E. 10 points)(September 2011) Prove the following form of Jensen's inequality: Let g be a nonnegative measurable function on [0, 1] and $\int \log (g(t)) dt$ is defined. Show that

$$\exp\left(\int_0^1 \log\left(g(t)\right) \, dt\right) \le \int_0^1 g(t) \, dt.$$

- 4. (M. 20 points) (March 2012) Prove or disprove
 - (a) If f is an increasing continuous function with f'(x) = 0 a.e, then f is a constant function.
 - (b) If f is an absolutely continuous function with f'(x) = 0 a.e., then f is a constant function.
- 5. (M. 15 points) Let $f \in L^1([0,1])$ and let $1 . Prove that <math>f \in L^p([0,1])$ if and only if

$$\sup_{\{I_j\}} \sum_j |I_j| \left(\frac{1}{|I_j|} \int_{I_j} |f|\right)^p < \infty$$

where the supremum is taken over all finite partitions of [0, 1] into intervals $\{I_j\}$.

6. (E. 10 points) For $E \subset \mathbb{R}^n$ and $f : E \to \mathbb{R}^n$, let

$$F = \left\{ x \in E \mid \text{there is } \{x_k\}_{k=1}^{\infty} \subset E \setminus \{x\} \text{ with } x_k \to x \text{ and } f(x_k) \to f(x) \right\}.$$

Prove that $E \setminus F$ is at most countable.

7. (E. 20 points) Let

$$f * g(x) := \int_{-\infty}^{\infty} f(y)g(x - y) \, dy$$

denote the convolution of f and g.

- (a) Let $f, g \in L^{(\mathbb{R})}$ be two square-integrable functions on (*R*) (with the usual Lebesgue measure). Show that the convolution f * g is a bounded continuous function on \mathbb{R} .
- (b) Instead let $h \in L^1(\mathbb{R})$ be fixed. Show that A(f) = f * h is a bounded operator $L^1(\mathbb{R}) \to L^1(\mathbb{R})$.