PhD Qualify Exam

 General Analysis

 General Analysis}

E: Easy, M: Moderate, D: Difficult

1. (M, 15 points) (September 2005) Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{p}[0,1], 1<p<$ ∞, which converge almost everywhere to a function f in $L^{p}[0,1]$, and suppose that there is a constant M such that $\left\|f_{n}\right\|_{p} \leq M$ for all n. For each function g in $L^{q}[0,1]$ and $\frac{1}{p}+\frac{1}{q}=1$, show that

$$
\int_{0}^{1} f g=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n} g
$$

2. (E. 10 points) (September 2008) Evaluate the integral $\int_{-\infty}^{\infty} e^{-x^{2}} \cos (x t) d x$.
3. (E. 10 points)(September 2011) Prove the following form of Jensen's inequality: Let g be a nonnegative measurable function on $[0,1]$ and $\int \log (g(t)) d t$ is defined. Show that

$$
\exp \left(\int_{0}^{1} \log (g(t)) d t\right) \leq \int_{0}^{1} g(t) d t
$$

4. (M. 20 points) (March 2012) Prove or disprove
(a) If f is an increasing continuous function with $f^{\prime}(x)=0$ a.e, then f is a constant function.
(b) If f is an absolutely continuous function with $f^{\prime}(x)=0$ a.e., then f is a constant function.
5. (M. 15 points) Let $f \in L^{1}([0,1])$ and let $1<p<\infty$. Prove that $f \in L^{p}([0,1])$ if and only if

$$
\sup _{\left\{I_{j}\right\}} \sum_{j}\left|I_{j}\right|\left(\frac{1}{\left|I_{j}\right|} \int_{I_{j}}|f|\right)^{p}<\infty
$$

where the supremum is taken over all finite partitions of $[0,1]$ into intervals $\left\{I_{j}\right\}$.
6. (E. 10 points) For $E \subset \mathbb{R}^{n}$ and $f: E \rightarrow \mathbb{R}^{n}$, let

$$
F=\left\{x \in E \mid \text { there is }\left\{x_{k}\right\}_{k=1}^{\infty} \subset E \backslash\{x\} \text { with } x_{k} \rightarrow x \text { and } f\left(x_{k}\right) \rightarrow f(x)\right\} .
$$

Prove that $E \backslash F$ is at most countable.
7. (E. 20 points) Let

$$
f * g(x):=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

denote the convolution of f and g.
(a) Let $\left.f, g \in L^{(} \mathbb{R}\right)$ be two square-integrable functions on (R) (with the usual Lebesgue measure). Show that the convolution $f * g$ is a bounded continuous function on \mathbb{R}.
(b) Instead let $h \in L^{1}(\mathbb{R})$ be fixed. Show that $A(f)=f * h$ is a bounded operator $L^{1}(\mathbb{R}) \rightarrow L^{1}(\mathbb{R})$.

