PhD Qualify Exam in Numerical Analysis

October 18, 2017

1. (2010 Fall, Easy) Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be a sequence generated by $x_{n+1}=g\left(x_{n}\right)$, where $g(x)$ is a function defined on a given interval $[a, b] \subset \mathbb{R}$.
(a) ${ }_{(5 \%)}$ Give a sufficient condition for $g(x)$ so that it has a fixed point in $[a, b]$.
(b) (5\%) Give a sufficient condition for $g(x)$ so that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is convergent of order k, where k is a positive integer.
(c) ${ }_{(5 \%)}$ Show that the Newton's iteration is locally quadratically convergent provided the iteration converges to a simple root.
2. (2017 Spring, Average) ${ }_{(10 \%)}$ Suppose $A \in \mathbb{R}^{n \times n}$ is nonsingular and that we have solutions to linear systems $A x=b$ and $A y=g$ where $b, g \in \mathbb{R}^{n}$ are given. Show how to solve the system

$$
\left[\begin{array}{cc}
A & g \\
h^{T} & \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
\mu
\end{array}\right]=\left[\begin{array}{l}
b \\
\beta
\end{array}\right]
$$

in $O(n)$ flops, where $\alpha, \beta \in \mathbb{R}$ and $h \in \mathbb{R}^{n}$ are given and the enlarged matrix $\left[\begin{array}{cc}A & g \\ h^{T} & \alpha\end{array}\right]$ is nonsingular.
3. (2006 Fall, Easy) 10% Give an example to illustrate that $(a+b) c \neq a c+b c$ may happen in a real calculator.
4. (Average) Consider the 2×2 matrix $A=\left[\begin{array}{cc}1 & \rho \\ -\rho & 1\end{array}\right]$
(a) (7\%) Under what conditions will Gauss-Seidal iteration converge with this matrix?
(b) ${ }_{(8 \%}$) For what range of ϖ will the SOR method converge?
(c) (5\%) What is the optimal choice for the parameter ϖ ?
5. (Average) We learn in calculus that $e=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}}$.
(a) (10\%) Assume that there are constants K_{1}, K_{2}, \ldots such that

$$
e=(1+h)^{\frac{1}{h}}+K_{1} h+K_{2} h^{2}+K_{3} h^{3}+\cdots
$$

Use extrapolation on the approximations to produce an $O\left(h^{3}\right)$ approximation to e when h is sufficient small.
(b) ${ }_{(5 \%}$) Do you think that the assumption in part 6.(a) is reasonable?
6. (2010 Fall, Easy) (15\%) Is it possible to use $a f(x+h)+b f(x)+c f(x-h)$ with suitably chosen coefficients a, b, c to approximate $f^{\prime \prime \prime}(x)$? How many function values at least are required to approximate $f^{\prime \prime \prime}(x)$?
7. (2011 Spring, Challenged) (15\%) Consider the initial-value problem

$$
y^{\prime}=f(t, y), \text { for } a \leq t \leq b \text { with } y(a)=\alpha
$$

Let

$$
\begin{aligned}
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+h \phi\left(t_{i}, w_{i}, h\right) \text { for } i>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{w}_{0}=\alpha \\
& \widetilde{w}_{i+1}=\widetilde{w}_{i}+h \widetilde{\phi}\left(t_{i}, \widetilde{w}_{i}, h\right) \text { for } i>0,
\end{aligned}
$$

give two one-step methods for approximating solution of $y(t)$ with local truncation error $\tau_{i+1}(h)=O\left(h^{n}\right)$ and $\widetilde{\tau}_{i+1}(h)=O\left(h^{n+1}\right)$, respectively, i.e.,

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h \phi\left(t_{i}, y\left(t_{i}\right), h\right)+O\left(h^{n+1}\right)
$$

and

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h \tilde{\phi}\left(t_{i}, y\left(t_{i}\right), h\right)+O\left(h^{n+2}\right) .
$$

Please use these two methods to construct an adaptive step-size control method for the considering initial-value problem.

