PhD Qualify Exam in Numerical Analysis, March 21, 2018

1. (Average) Consider the initial value problem

$$
\text { (I.V.P.) }\left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y) \text { for } t \in(a, b), \\
y(a)=\alpha .
\end{array}\right.
$$

Show that the difference method

$$
\begin{aligned}
w_{0} & =\alpha \\
w_{i+1} & =w_{i}+a_{1} f\left(t_{i}, w_{i}\right)+a_{2} f\left(t_{i}+\delta, w_{i}+\beta f\left(t_{i}, w_{i}\right)\right)
\end{aligned}
$$

for each $i=0,1, \ldots, N-1$, cannot have local truncation error $O\left(h^{3}\right)$ for any choice of a_{1}, a_{2}, δ and β. ${ }_{(10 \%)}$
2. (Easy) The iteration equation for the secant method can be written in the simpler form

$$
x_{n}=\frac{f\left(x_{n-1}\right) x_{n-2}-f\left(x_{n-2}\right) x_{n-1}}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)} .
$$

Explain why, in general, this iteration equation is likely to be less accurate than the one given by

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)\left(x_{n-1}-x_{n-2}\right)}{f\left(x_{n-1}\right)-f\left(x_{n-2}\right)} .
$$

(10\%)
3. (Average) Show that the numerical quadrature formula

$$
Q(P)=\sum_{i=1}^{n} c_{i} P\left(x_{i}\right)
$$

can not accomplish an exact computation, provided that polynomial $P(x)$ is of degree greater than $2 n-1$, regardless of the choice of $c_{1}, c_{2}, \ldots, c_{n}$ and $x_{1}, x_{2}, \ldots, x_{n}$. (10\%)
4. (Average) A sequence $\left\{p_{n}\right\}$ is said to be superlinearly convergent to p if

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|}=0
$$

(a) (7\%) Show that if $p_{n} \rightarrow p$ of order α for $\alpha>1$, then $\left\{p_{n}\right\}$ is superlinearly convergent to p.
(b) ${ }_{(8 \%)}$ Show that $p_{n}=\frac{1}{n^{n}}$ is superlinearly convergent to 0 but does not converge to 0 of order α for any $\alpha>1$.
5. Let $x^{(k)}=T x^{(k-1)}+c, k=1,2, \ldots$ with a given $x^{(0)}$ be an iterative method for solving the linear system $A x=b$, where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$.
(a) (Average) Show that

$$
\left\|x^{(k)}-x\right\| \leq\|T\|^{k}\left\|x^{(0)}-x\right\|
$$

and

$$
\left\|x^{(k)}-x\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|
$$

where x is the fixed point of the iteration $x^{(k)}=T x^{(k-1)}+c$, provided that $\|T\|<1$. ${ }_{\text {(10\%) }}$
(b) (Easy) Show that the Jacobi iteration converges if A is strictly diagonally dominant. (5\%)
(c) (Average) Show that the Gauss-Seidel iteration converges to a solution of $A x=b$ if A is strictly diagonally dominant or A is symmetric positive definite. (10\%)
6. (Average) Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and that for specific given right hand side vectors $b, g \in \mathbb{R}^{n}$, solutions to linear systems $A y=b$ and $A z=g$, respectively, are already known. Show how to solve the system

$$
\left[\begin{array}{cc}
A & g \\
h^{T} & \alpha
\end{array}\right]\left[\begin{array}{l}
x \\
\mu
\end{array}\right]=\left[\begin{array}{l}
b \\
\beta
\end{array}\right]
$$

in $O(n)$ flops where $\alpha, \beta \in \mathbb{R}$ and $h \in \mathbb{R}^{n}$ are given and the matrix $A_{+}=\left[\begin{array}{cc}A & g \\ h^{T} & \alpha\end{array}\right]$ is nonsingular. (10%)
7. (Average) Apply Householder reflection transformation to verify that

$$
\operatorname{det}\left(I_{n}+x y^{T}\right)=1+x^{T} y, \text { where } x, y \in \mathbb{R}^{n} .
$$

8. (Easy) Show that if B is singular, then

$$
\frac{1}{\kappa(A)} \leq \frac{\|A-B\|}{\|A\|}
$$

where $\kappa(A)=\|A\|\left\|A^{-1}\right\| .{ }_{(10 \%)}$

