Question:	1	2	3	4	5	6	7	Total
Points:	10	10	15	20	15	15	15	100
Score:								

Easier: 1,2 Medium: 3,4,5 Harder: 6,7

- 1. (10 points) Prove that any group of order 45 is not simple.
- 2. (10 points) Show that the ideal generated by 7 and $x^3 2$ in $\mathbb{Z}[x]$ is maximal.
- 3. (a) (10 points) Find all intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
 - (b) (5 points) Show that $\sqrt{5}$ is not an element $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
- 4. (a) (10 points) Prove that every PID is a UFD.
 - (b) (10 points) Show that $\mathbb{Z}[\sqrt{-1}]$ is a UFD.
- 5. (15 points) Let F be a finite field of order p^n where p is a prime and n a positive integer. Prove that there is exactly one subfield of order p^m for each divisor m of n.
- 6. (15 points) Let M be a finite generated module over a commutative ring R with identity and $\phi: M \to M$ be an R-module homomorphism. Prove that there exists a polynomial p(x) in R[x] such that $p(\phi) = 0$ as an element in the R-algebra $\operatorname{Hom}_R(M, M)$ of R-module homomorphisms.
- 7. (15 points) Let p be a prime and let G be a finite group whose Sylow p-subgroup is normal. Show that the number of elements of order p in G is congruent to -1 modulo p.