PhD Qualify Exam General Analysis

March, 2017

(E:Easy, M:Moderate, D:Difficult)

- 1. (15 pts, E, 2016) Let *E* be a measurable set in \mathbb{R}^n . *f* and f_k are measurable in *E* and $\int_E |f f_k|^p \to 0$ as $k \to \infty$, $0 . Please prove that <math>f_k$ converges to *f* in measure.
- 2. (10 pts, E) Let f be an absolutely continuous function on $[a, b] \subset \mathbb{R}$. If $Z \subset [a, b]$ is a Lebesgue measure-zero set, then f(Z) has Lebesgue measure zero.
- 3. (20 pts, M, 2015) Please show the following generalized dominated convergence theorem: Let g be an integrable function, g_n be a sequence of integrable functions such that g_n → g a.e. and |f_n| ≤ g_n, f_n → f a.e.. If

$$\int g dx = \lim_{n \to \infty} \int g_n dx,$$

then

$$\int f dx = \lim_{n \to \infty} \int f_n dx.$$

- 4. (20 pts, M, 2014) Let φ(x) ≥ 0 be a bounded measurable function in ℝⁿ. φ = 0 for |x| ≥ 1 and ∫ φdx = 1. For ε > 0, let φ_ε(x) = ε⁻ⁿφ(x/ε).
 - (a) If $f \in L^1(\mathbb{R}^n)$, show that $\lim_{\epsilon \to 0} (f * \phi_{\epsilon})(x) = f(x)$ a.e..
 - (b) If $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, show that $\|(f * \phi_{\epsilon})(x) f(x)\|_p \to 0$ as $\epsilon \to 0$.

(Recall: $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$.)

5. (20 pts, M) Prove the following *integral version of Minkowski's inequality* for $1 \le p < \infty$:

$$\left[\int \left|\int f(x,y)dx\right|^p dy\right]^{1/p} \le \int \left[\int |f(x,y)|^p dy\right]^{1/p} dx.$$

- 6. (15 pts, D) Let (X, \mathcal{M}, μ) be a positive measure space with $\mu(X) < \infty$, and let f and g be real-valued measurable functions.
 - (i) (7 pts, E) Show that if

$$\int_E f d\mu = \int_E g d\mu, \quad \forall E \in \mathcal{M},$$

then f = g a.e..

(ii) (8 pts) If

$$\int_X f d\mu = \int_X g d\mu.$$

Show that either (a) f = g a.e., or (b) there exists an $E \in \mathcal{M}$ such that

$$\int_E f d\mu > \int_E g d\mu.$$