Question: #	1	2	3	4	5	6	7	total
points:	10	15	15	15	15	15	15	100
Score:								100

Easier: 1, 2, 3, 4 Medium: 5, 6 Harder: 7

- (1) Determine whether each statement below is true or false. If true, give a brief explanation. If false, provide a counterexample.
 - (a) (5pts) All subgroups of a direct product $G \times H$ of groups G and H are of the form $R \times S$ for $R \leq G$ and $S \leq H$.
 - (b) (5pts) An Artinian integral domain is a field.
- (2) (15pts) Prove that $\mathbb{Z}[\sqrt{-1}]$ is a principal ideal domain.
- (3) (15pts) How many elements of order 7 are there in a simple group of order 168?
- (4) (15pts) Show that the set of nilpotent elements (i.e. elements x such that $x^n = 0$, for some non-negative integer n) in a commutative ring R is an ideal.
- (5) (15pts) Find the number of monic irreducible quadratic polynomial (i.e. irreducible polynomials of the form $x^2 + ax + b$) in $\mathbb{Z}_p[x]$, where p is a prime.
- (6) (a) (10pts) Find all intermediate fields between \mathbb{Q} and $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. (b) (5pts) Show that $\sqrt{5}$ is not an element in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
- (7) (15pts) Show that the ideal generated by 13 and x^3-2 in $\mathbb{Z}[x]$ is maximal.