Ph'D Qualifying Exam General Analysis

March, 2014

E:Easy, M:Moderate, D:Difficult

- 1. (15 pts, M) Let $|\cdot|_e$ denote the outer measure. If $\{E_k\}$ is an increasing sequence of sets in \mathbb{R}^n and $E_k \to E$, show that $\lim_{k\to\infty} |E_k|_e = |E|_e$.
- 2. (20 pts, M) Let $\phi(x) \ge 0$ be a bounded measurable function in \mathbb{R}^n . $\phi(x) = 0$ for $|x| \ge 1$ and $\int \phi \, dx = 1$. For $\epsilon > 0$, let $\phi_{\epsilon}(x) = \epsilon^{-n} \phi(x/\epsilon)$.
 - (a) If $f \in L^1(\mathbb{R}^n)$, show that $\lim_{\epsilon \to 0} (f \star \phi_{\epsilon})(x) = f(x)$ a.e..
 - (b) If $f \in L^p(\mathbb{R}^n)$, $1 \le p < \infty$, show that $\|(f \star \phi_{\epsilon})(x) f(x)\|_p \to 0$ as $\epsilon \to 0$.

(Recall: $(f \star g)(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dy$.)

3. (15 pts, M) Let $f \in L^1(\mathbb{R}^k)$. The maximal function Mf(x) is defined as

$$Mf(x) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(y)| dy.$$

where the sup is taken over all cubes Q with center x.

- (a) Assume that both f and its maximal function Mf are in $L^1(\mathbb{R}^k)$. Prove that f(x) = 0 a.e..
- (b) Define

$$f(x) = \begin{cases} x^{-1}(\log x)^{-2}, & 0 < x < 1/2. \\ 0, & \text{elsewhere.} \end{cases}$$

Then $f \in L^1(\mathbb{R}^1)$. Show that

$$Mf(x) \ge |2x\log(2x)|^{-1}$$
, for $0 < x < 1/4$.

so that $\int_0^1 Mf(x)dx = \infty$.

- 4. (15 pts, E, 2011) Let E be a measurable set in \mathbb{R}^n . f and f_k are measurable in E. If p > 0, and $\int_E |f f_k|^p \to 0$ as $k \to \infty$, show that there is a subsequence $f_{k_j} \to f$ a.e. in E.
- 5. (15 pts, E, 2013) Let $\{f_k\}$ be a sequence of measurable functions defined on a measurable set E with $|E| < \infty$. For each $x \in E$, $|f_k(x)| \leq M_x$ for all k. Please show that given $\epsilon > 0$, there is a closed set $F \subset E$ and a finite M such that $|E - F| < \epsilon$ and $|f_k(x)| \leq M$ for all k and all $x \in F$.
- 6. (20 pts, M, 2012) Please prove or disprove
 - (a) If f is strictly increasing continuous function with f'(x) = 0 a.e., then f is a constant function.
 - (b) If f is an absolutely continuous function with f'(x) = 0 a.e., then f is a constant function.