PhD Qualifying exam on Mathematical Programming March 1,2013

1. (15 points) Recall that linear programming (LP) is a special case of the following conic optimization model

minimize
$$c^T x$$

subject to $Ax = b, x \in \mathcal{K},$

where $\mathcal{K} \subseteq E^n$ is a prescribed closed convex cone. For example, $\mathcal{K} = \{x : x \ge 0\}$. Here we assume that A, b, c are proper dimensions and the rows in A are linearly independent. When $\mathcal{K} \triangleq \mathcal{K}_L$, the conic optimization model becomes the so-called "Second order cone Programming (SOCP)." When $\mathcal{K} \triangleq PSD(n)$, the conic optimization model becomes the so-called "Semidefinite Programming (SDP)". The popularity of SOCP is also due to that it is a generalized form of convex QCQP (Quadratically Constrained Quadratic Programming). To be precise, consider the following QCQP.

minimize $x^T Q_0 x + 2b_0^T x$

subject to $x^T Q_i x + 2b_i^T x + c_i \le 0, \ i = 1, 2, \cdots, m,$

where $Q_i \succeq 0$, i.e., Q is positive semidefinite for i = 0, 1, 2, ..., m.

(a) (5 points) Given that $t \in E^1$ and $x \in E^n$, prove that

$$t \ge x^T x$$
 if and only if $||(\frac{t-1}{2}, x)^T|| \le \frac{t+1}{2}$.

(b) (10 points) Using the result of (a), please formulate QCQP as an SOCP problem.

2. (15 points) Let $f: S \to E_1$ be a concave function, where $S \subseteq E_n$ is a nonempty polytope with vertices x_1, \dots, x_E . Show that the convex envelop of f over S is given by

$$f_{S}(x) = \min\{\sum_{i=1}^{E} \lambda_{i} f(x_{i}) : \sum_{i=1}^{E} \lambda_{i} x_{i} = x, \sum_{i=1}^{E} \lambda_{i} = 1, \lambda_{i} \ge 0, \text{ for } i = 1, 2, ..., E\}.$$

Hence, show that if S is a simplex in E_n , then f_S is an affine function that attains the same values as f over all the vertices of S.

3. (20 points) For the optimization problem of the form

min
$$f(x)$$
 s.t. $x \in \Omega$,

where $f \in C^2$ and $\Omega \subseteq \mathbb{R}^n$. Let x^* be a relative minimum of f over Ω , and d be any feasible direction at x^* .

- (a) (8 points) State the first order necessary condition in terms of d and $\nabla f(x^*)$. Give an example to show that the condition is not sufficient.
- (b) (7 points) State and prove the second order necessary condition in terms of d; ∇f(x*), and ∇²f(x*).
- (c) (5 points) Consider the quadratic problem

min
$$\frac{1}{2}x^tQx - f^tx$$
 s.t. $Ax = b$,

where Q is a symmetric $n \times n$ matrix, $A \in \mathbb{R}^{m \times n}$, $f, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Prove or disprove that: if x^* is a local minimum point, then it must be a global minimum point.

4. (20 points) Let X be a nonempty open set in E_n , and consider $f: E_n \to E_1, g_i: E_n \to R$ for $i = 1, ..., m, h_i: E_n \to E_1$ for some $i = 1, ..., \ell$. Consider Problem P to

Minimize f(x)

subject to $g_i(x) \leq 0$ for i = 1, 2, ..., m,

 $h_i(x) = 0$ for $i = 1, 2, ..., \ell$,

 $x \in X$.

Let \bar{x} be a feasible solution, and let $I = \{i : g_i(\bar{x}) = 0\}$. Suppose that the KKT conditions holds at \bar{x} , that is, there exist scalars $\bar{u}_i \ge 0$ for $i \in I$ and \bar{v}_i for $i = 1, 2, ..., \ell$ such that

$$\nabla f(\bar{x}) + \sum_{i \in I} \bar{u}_i \nabla g_i(\bar{x}) + \sum_{i=1}^{\ell} \bar{v}_i \nabla h_i(\bar{x}) = 0.$$

(a) (10 points) Suppose that f is pseudoconvex at \bar{x} and ϕ is quasiconvex at \bar{x} , where

$$\phi(x) = \sum_{i \in I} \bar{u}_i g_i(x) + \sum_{i=1}^{\ell} \bar{v}_i h_i(x).$$

Show that \bar{x} is global optimal solution to Problem P.

- (b) (10 points) Show that if $f + \sum_{i \in I} \bar{u}_i g_i + \sum_{i=1}^{\ell} \bar{v}_i h_i$ is pseudoconvex, then \bar{x} is a global optimal solution to Problem P.
- 5. (20 points) Consider the bilinear program to minimize $c^t x + d^t y + x^t H y$ subject to $x \in X$ and $y \in Y$, where X and Y are bounded polyhedral sets in E_n and E_m , respectively. Let \hat{x} and \hat{y} be extreme points of the sets X and Y, respectively.
 - (a) (5 points) Verify that the objective function is neither quasiconvex nor quasiconcave.
 - (b) (5 points) Prove that there exists an extreme point (\bar{x}, \bar{y}) that solves the bilinear program.
 - (c) (5 points) Prove that the point (\hat{x}, \hat{y}) is a local minimum of the bilinear program if and only if the following are true:
 - (1) $c^t(x-\hat{x}) \ge 0$ and $d^t(y-\hat{y}) \ge 0$ for each $x \in X$ and $y \in Y$;
 - (2) $c^t(x-\hat{x}) + d^t(y-\hat{y}) > 0$ whenever $(x-\hat{x})^t H(y-\hat{y}) < 0$.
 - (d) (5 points) Show that the point (\hat{x}, \hat{y}) is a KKT point if and only if $(c^t + \hat{y}^t H)(x \hat{x}) \ge 0$ for each $x \in X$ and $(d^t + \hat{x}^t H)(y - \hat{y}) \ge 0$ for each $y \in Y$.
- 6. (10 points) Let $f: S \to E_1$ be a continuous function, where S is a convex subset of E_n . Show that f is quasimonotone if and only if the level surface $\{x \in S : f(x) = \alpha\}$ is a convex set for all $\alpha \in E_1$.