PhD Qualifying exam on Mathematical Programming March 1,2013

1. (15 points) Recall that linear programming (LP) is a special case of the following conic optimization model

$$
\begin{array}{lc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, x \in \mathcal{K},
\end{array}
$$

where $\mathcal{K} \subseteq E^{n}$ is a prescribed closed convex cone. For example, $\mathcal{K}=\{x: x \geq 0\}$. Here we assume that A, b, c are proper dimensions and the rows in A are linearly independent. When $\mathcal{K} \triangleq \mathcal{K}_{L}$, the conic optimization model becomes the so-called "Second order cone Programming (SOCP)." When $\mathcal{K} \triangleq P S D(n)$, the conic optimization model becomes the so-called "Semidefinite Programming (SDP)". The popularity of SOCP is also due to that it is a generalized form of convex QCQP (Quadratically Constrained Quadratic Programming). To be precise, consider the following QCQP.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{T} Q_{0} x+2 b_{0}^{T} x \\
\text { subject to } & x^{T} Q_{i} x+2 b_{i}^{T} x+c_{i} \leq 0, i=1,2, \cdots, m,
\end{array}
$$

where $Q_{i} \succeq 0$, i.e., Q is positive semidefinite for $i=0,1,2, \ldots, m$.
(a) (5 points) Given that $t \in E^{1}$ and $x \in E^{n}$, prove that

$$
t \geq x^{T} x \text { if and only if }\left\|\left(\frac{t-1}{2}, x\right)^{T}\right\| \leq \frac{t+1}{2}
$$

(b) (10 points) Using the result of (a), please formulate QCQP as an SOCP problem.
2. (15 points) Let $f: S \rightarrow E_{1}$ be a concave function, where $S \subseteq E_{n}$ is a nonempty polytope with vertices x_{1}, \cdots, x_{E}. Show that the convex envelop of f over S is given by

$$
f_{S}(x)=\min \left\{\Sigma_{i=1}^{E} \lambda_{i} f\left(x_{i}\right): \Sigma_{i=1}^{E} \lambda_{i} x_{i}=x, \Sigma_{i=1}^{E} \lambda_{i}=1, \lambda_{i} \geq 0, \text { for } i=1,2, \ldots, E\right\}
$$

Hence, show that if S is a simplex in E_{n}, then f_{S} is an affine function that attains the same values as f over all the vertices of S.
3. (20 points) For the optimization problem of the form

$$
\min f(x) \quad \text { s.t. } x \in \Omega \text {, }
$$

where $f \in C^{2}$ and $\Omega \subseteq \mathbb{R}^{n}$. Let x^{*} be a relative minimum of f over Ω, and d be any feasible direction at x^{*}.
(a) (8 points) State the first order necessary condition in terms of d and $\nabla f\left(x^{*}\right)$. Give an example to show that the condition is not sufficient.
(b) (7 points) State and prove the second order necessary condition in terms of $d ; \nabla f\left(x^{*}\right)$, and $\nabla^{2} f\left(x^{*}\right)$.
(c) (5 points) Consider the quadratic problem

$$
\min \frac{1}{2} x^{t} Q x-f^{t} x \quad \text { s.t. } \quad A x=b,
$$

where Q is a symmetric $n \times n$ matrix, $A \in \mathbb{R}^{m \times n}, f, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$. Prove or disprove that: if x^{*} is a local minimum point, then it must be a global minimum point.
4. (20 points) Let X be a nonempty open set in E_{n}, and consider $f: E_{n} \rightarrow E_{1}, g_{i}: E_{n} \rightarrow R$ for $i=1, \ldots, m, h_{i}: E_{n} \rightarrow E_{1}$ for some $i=1, \ldots, \ell$. Consider Problem P to
Minimize $f(x)$
subject to $g_{i}(x) \leq 0$ for $i=1,2, \ldots, m$,

$$
\begin{aligned}
& h_{i}(x)=0 \text { for } i=1,2, \ldots, \ell \\
& x \in X .
\end{aligned}
$$

Let \bar{x} be a feasible solution, and let $I=\left\{i: g_{i}(\bar{x})=0\right\}$. Suppose that the KKT conditions holds at \bar{x}, that is, there exist scalars $\bar{u}_{i} \geq 0$ for $i \in I$ and \bar{v}_{i} for $i=1,2, . ., \ell$ such that

$$
\nabla f(\bar{x})+\sum_{i \in I} \bar{u}_{i} \nabla g_{i}(\bar{x})+\sum_{i=1}^{\ell} \bar{v}_{i} \nabla h_{i}(\bar{x})=0 .
$$

(a) (10 points) Suppose that f is pseudoconvex at \bar{x} and ϕ is quasiconvex at \bar{x}, where

$$
\phi(x)=\sum_{i \in I} \bar{u}_{i} g_{i}(x)+\sum_{i=1}^{\ell} \bar{v}_{i} h_{i}(x) .
$$

Show that \bar{x} is global optimal solution to Problem P.
(b) (10 points) Show that if $f+\sum_{i \in I} \bar{u}_{i} g_{i}+\sum_{i=1}^{\ell} \bar{v}_{i} h_{i}$ is pseudoconvex, then \bar{x} is a global optimal solution to Problem P.
5. (20 points) Consider the bilinear program to minimize $c^{t} x+d^{t} y+x^{t} H y$ subject to $x \in X$ and $y \in Y$, where X and Y are bounded polyhedral sets in E_{n} and E_{m}, respectively. Let \hat{x} and \hat{y} be extreme points of the sets X and Y, respectively.
(a) (5 points) Verify that the objective function is neither quasiconvex nor quasiconcave.
(b) (5 points) Prove that there exists an extreme point (\bar{x}, \bar{y}) that solves the bilinear program.
(c) (5 points) Prove that the point (\hat{x}, \hat{y}) is a local minimum of the bilinear program if and only if the following are true:
(1) $c^{t}(x-\hat{x}) \geq 0$ and $d^{t}(y-\hat{y}) \geq 0$ for each $x \in X$ and $y \in Y$;
(2) $c^{t}(x-\hat{x})+d^{t}(y-\hat{y})>0$ whenever $(x-\hat{x})^{t} H(y-\hat{y})<0$.
(d) (5 points) Show that the point (\hat{x}, \hat{y}) is a KKT point if and only if $\left(c^{t}+\hat{y}^{t} H\right)(x-\hat{x}) \geq 0$ for each $x \in X$ and $\left(d^{t}+\hat{x}^{t} H\right)(y-\hat{y}) \geq 0$ for each $y \in Y$.
6. (10 points) Let $f: S \rightarrow E_{1}$ be a continuous function, where S is a convex subset of E_{n}. Show that f is quasimonotone if and only if the level surface $\{x \in S: f(x)=\alpha\}$ is a convex set for all $\alpha \in E_{1}$.

