GENERAL ANALYSIS

(E:Easy, M: Moderate, D: Difficult) PhD Qualify Exam March 1, 2013

- 1. (E, 15 pts, 2011, 6) Let (X, \mathfrak{M}, μ) be a measure space and let $\{E_n\}$ be a sequence in \mathfrak{M} with $E_{n+1} \subseteq E_n$ for all n. If there exists some j such that $\mu(E_j) < \infty$. Show that $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$. Give a counterexample if $\mu(E_j) = \infty$ for all j.
- 2. (E, 15 pts) Let $\{f_k\}$ be a sequence of measurable functions defined on a meaurable E with $|E| < \infty$. If $|f_k(x)| \le M_x < +\infty$ for all k for each $x \in E$, show that given $\varepsilon > 0$, there is a closed $F \subset E$ and a finite M such that $|E F| < \varepsilon$ and $|f_k(x)| \le M$ for all k and all $x \in F$.
- 3. (E, 15 pts, 2011, 6) Let $f(x, y) = ye^{-xy} \sin x$ defined on a measurable set

$$E = \{ (x, y) : 0 < x < \infty, \ 0 < y < 1 \}.$$

Compute the integral

$$\iint_E y e^{-xy} \sin x dx dy$$

and justify your answer.

4. (M, 15 pts, 2011, 9) Let (X, \mathfrak{M}, μ) be a measure space. Assume that $f \in L^r(X)$ for some $0 < r < \infty$. Show that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty} \,.$$

- 5. (M, 20 pts, 2012, 3) Let f be a bounded function on the closed, bounded interval [a, b]. Then f is Riemann integrable over [a, b] if and only if the set of points in [a, b] at which f fails to be continuous has measure zero.
- 6. (M, 20 pts) Let g(x) be the function given by

$$g(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Determine if the point x = 0 is in the Lebesgue set of g or not. Aslo let $G(x) = \int_0^x g(s) ds$, $x \in \mathbb{R}^1$. Do we have G'(0) = g(0) or not.