PhD Qualifying exam on Mathematical Programming September 28,2012

- 1. (25 points) Prove or disprove the following statements.
 - (a) (5 points) Let P be a polyhedral set in \mathbb{R}^n . Assume that $P \neq \emptyset$ and $P \neq \mathbb{R}^n$. Then \bar{x} is an extreme point of P if and only if $P \setminus \{\bar{x}\}$ is a convex set.
 - (b) (5 points) The optimum for maximizing a convex function over a bounded polyhedral set P must be achieved at least on one of the extreme points of P.
 - (c) (5 points) Consider the quadratic problem

$$\min \frac{1}{2}x^tQx - f^tx$$

s.t. $Ax = b$

where Q is symmetric $n \times n$ matrix, $A \in \mathbb{R}^{m \times n}$, $f, x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. If x^* is a local minimum point, then it must be a global minimum point.

(d) (10 points) Given the following two linear programs:

(P1) min
$$(c)^T x$$
 s.t. $Ax = b, x \ge 0$,

(P2) min
$$(c')^T x$$
 s.t. $Ax = b', x \ge 0$

where $A \in \mathbb{R}^{m \times n}$, $c, c', x \in \mathbb{R}^n$, $b, b' \in \mathbb{R}^m$, $c' = \beta c$, $b' = \lambda b$, $\lambda > 0$ and $\beta \in \mathbb{R}$. Assume that (P1) has at least two feasible solutions but has a unique finite optimum. Moreover, (P1) is nondegenerate.

- i. (4 points) (P2) may be degenerate.
- ii. (3 points) (P2) may be unbounded.
- iii. (3 points) (P2) may have multiple optimal solutions.
- 2. (15 points) Recall that linear programming (LP) is a special case of the following conic optimization model

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \ x \in \mathcal{K}, \end{array}$

where $\mathcal{K} \subseteq E^n$ is a prescribed closed convex cone. For example, $\mathcal{K} = \{x : x \ge 0\}$. Here we assume that A, b, c are proper dimensions and the rows in A are linearly independent. When $\mathcal{K} \triangleq \mathcal{K}_L$, the conic optimization model becomes the so-called "Second order cone Programming (SOCP)." When $\mathcal{K} \triangleq PSD(n)$, the conic optimization model becomes the so-called "Semidefinite Programming (SDP)". The popularity of SOCP is also due to that it is a generalized form of convex QCQP (Quadratically Constrained Quadratic Programming). To be precise, consider the following QCQP.

minimize
$$x^T Q_0 x + 2b_0^T x$$

subject to $x^T Q_i x + 2b_i^T x + c_i \leq 0, \ i = 1, 2, \cdots, m,$

where $Q_i \succeq 0$, i.e., Q is positive semidefinite for i = 0, 1, 2, ..., m.

(a) (5 points) Given that $t \in E^1$ and $x \in E^n$, prove that

$$t \ge x^T x$$
 if and only if $||(\frac{t-1}{2}, x)^T|| \le \frac{t+1}{2}$.

- (b) (10 points) Using the result of (a), please formulate QCQP as an SOCP problem.
- 3. (12 points) Let f: S → E₁, where S ⊆ E_n is a nonempty convex set. Then the convex envelop of f over S, denoted f_S(x), x ∈ S, is a convex function such that f_S(x) ≤ f(x) for all x ∈ S; and if g is any other convex function for which g(x) ≤ f(x) for all x ∈ S, then f_S(x) ≥ g(x) for all x ∈ S. Hence, f_S is the pointwise supremum over all convex underestimators of f over S. Show that min{f(x) : x ∈ S} = min{f_S(x) : x ∈ S}, assuming that the minima exist, and that

$$\{x^*\in S: f(x^*)\leq f(x) \ \ ext{for all} \ x\in S\}\subseteq \{x^*\in S: f_S(x^*)\leq f_S(x) \ \ ext{for all} \ x\in S\}.$$

4. (13 points) Let $f: S \to E_1$ be a concave function, where $S \subseteq E_n$ is a nonempty polytope with vertices x_1, \dots, x_E . Show that the convex envelop of f over S is given by

$$f_{S}(x) = \min\{\Sigma_{i=1}^{E}\lambda_{i}f(x_{i}): \Sigma_{i=1}^{E}\lambda_{i}x_{i} = x, \Sigma_{i=1}^{E}\lambda_{i} = 1, \lambda_{i} \ge 0, \text{ for } i = 1, 2, ..., E\}.$$

Hence, show that if S is a simplex in E_n , then f_S is an affine function that attains the same values as f over all the vertices of S.

- 5. (15 points) Let c be an n vector, b an m vector, A an $m \times n$ matrix, and H a symmetric $n \times n$ positive definite matrix. Consider the following two problems:
 - Minimize $c^t x + \frac{1}{2} x^t \mathbf{H} x$ subject to $\mathbf{A} x \leq b$,
 - Minimize $h^t v + \frac{1}{2} v^t \mathbf{G} v$ subject to $v \ge 0$,

where $G = \mathbf{A}\mathbf{H}^{-1}A^t$ and $h = \mathbf{A}\mathbf{H}^{-1}c + b$. Investigate the relationship between the KKT conditions of these two problems.

- 6. (10 points) Let S be aconvex set in E^n and S^* a convex set in E^m . Suppose T is an $m \times n$ matrix that establishes a one-to-one correspondence between S and S^* , i.e., for every $s \in S$ there is $s^* \in S^*$ such that $Ts = s^*$, and for every $s^* \in S^*$ there is a single $s \in S$ such that $Ts = s^*$. Show that there is a one-to-one correspondence between extreme points of S and S^* .
- 7. (10 points) Let

$$f(x) := \frac{1}{p} |x|^p, \ p > 1, \ x \in \mathbb{R}^n.$$

Compute the conjugate function f^* and verify that $f^{**} = f$.