國立成功大學應用數學所 數値分析 博士班資格考 March，2， 2012

1．（100上，Average）Consider a linear boundary value problem with Dirich－ let boundary conditions：

$$
\begin{aligned}
& u^{\prime \prime}(x)=f(x) \quad \text { for } 0<x<1 \\
& u(0)=\alpha, \quad u(1)=\beta
\end{aligned}
$$

We attempt to compute a grid function consisting of values U_{0}, U_{1}, \ldots ， U_{m}, U_{m+1} where U_{j} is our approximation to the solution $u\left(x_{j}\right)$ ．Here $x_{j}=j h$ and $h=1 /(m+1)$ is the mesh width，the distance between grid points．From the boundary conditions we know that $U_{0}=\alpha$ and $U_{m+1}=\beta$ and so we have m unknown values U_{1}, \ldots, U_{m} to compute． We solve this problem with a centered difference scheme，

$$
\frac{1}{h^{2}}\left(U_{j-1}-2 U_{j}+U_{j+1}\right)=f\left(x_{j}\right) \quad \text { for } j=1,2, \ldots, m
$$

The problem can be written in the form $A U=F$ where U is the vector of unknowns $U=\left[U_{1}, U_{2}, \ldots, U_{m}\right]^{T}$ and

$$
A=\frac{1}{h^{2}}\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right], \quad F=\left[\begin{array}{c}
f\left(x_{1}\right)-\alpha / h^{2} \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots \\
f\left(x_{m-1}\right) \\
f\left(x_{m}\right)-\beta / h^{2}
\end{array}\right]
$$

（a）(5%) Compute the local truncation error of this scheme．
（b）(10%) Find the eigenvalues of A ．
（c）(5%) Show that $\left\|A^{-1}\right\|_{2}$ is uniformly bounded as $h \rightarrow 0$ and the numerical scheme is stable in the $\mathbf{2}$－norm．
（d）（5 \％）Show that the numerical scheme is convergent in the 2－ norm．

2. (Difficult)

(a) (10 \%) Determine the Green's functions for the two-point boundary value problem $u^{\prime \prime}(x)=f(x)$ on $0<x<1$ with Dirichlet conditions at $x=0$ and $x=1$, i.e, find the function $G(x, \bar{x})$ solving

$$
u^{\prime \prime}(x)=\delta(x-\bar{x}), \quad u(0)=0, \quad u(1)=0
$$

(b) (10%) Find the general formulas for the elements of the inverse of the matrix A in Problem 1. Write out A^{-1} for the case $h=0.25$. Note that finding A^{-1} is equivalent to solving linear systems

$$
A v=e_{j}
$$

where e_{j} is a unit vector with the value 1 as its j th element and all other elements equal to 0 , and the linear system is a discrete version of the problem

$$
v^{\prime \prime}(x)=h \delta\left(x-x_{j}\right)
$$

with homogeneous boundary conditions.
(c) (5%) Show that $\left\|A^{-1}\right\|_{\infty}$ is uniformly bounded as $h \rightarrow 0$ and the numerical scheme is stable in the max-norm.
3. (Average)

Consider the heat equation with Dirichlet boundary conditions:

$$
\begin{aligned}
& u_{t}=u_{x x} \quad \text { for } 0<x<1,0<t<T \\
& u(0, t)=0, \quad \text { for } 0<t<T \\
& u(1, t)=0, \quad \text { for } 0<t<T
\end{aligned}
$$

We attempt to solve the problem using a finite difference scheme on a discrete with grid points $\left(x_{i}, t_{n}\right)$ where $x_{i}=i h, t_{n}=n k$. Here $h=1 /(m+1)$ is the mesh spacing on the x-axis and k is the time step. Let $U_{i}^{n} \approx u\left(x_{i}, t_{n}\right)$ represent the numerical solution at grid point $\left(x_{i}, t_{n}\right)$.
The finite difference is

$$
\begin{aligned}
U_{i}^{n+1} & =U_{i}^{n}+\frac{k}{h^{2}}\left(U_{i-1}^{n}-2 U_{i}^{n}+U_{i+1}^{n}\right), . \quad \text { for } \mathrm{i}=1, \ldots, \mathrm{~m} \\
U_{0}^{n} & =0, \quad U_{m+1}^{n}=0
\end{aligned}
$$

(a) (10\%) Determine the order of accuracy of this method (in both space and time).
(b) (10 \%) Suppose we take $k=\lambda h^{2}$ for some fixed $\lambda>0$ and refine the grid. Show that this method is stable for $0<\lambda \leq 1 / 2$ and hence convergent.
(c) (5%) Based on the CFL Condition, a numerical method can be convergent only if its numerical domain of dependence contains the true domain of dependence of the PDE, at least in the limit as k and h go to zero.
What is the domain of dependence of the heat equation? Does this explicit scheme satisfy the CFL condition?
4. (97上, Average) (15%) Prove that if a nonsingular matrix A has an $L U$-factorization in which L is a lower triangular matrix with unit diagonals, i.e., $L(i, i)=1$ for all i, then the $L U$-factorization is unique.
5. (Easy) Let $A \in \mathbb{C}^{m \times n}$ be full rank. Verify the following statements.
(a) (5%) If $m>n$, then $X=\left(A^{H} A\right)^{-1} A^{H}$ gives a Moore-Penrose pseudo-inverse of matrix A.
(b) (5 \%) If $m<n$, then $X=A^{H}\left(A A^{H}\right)^{-1}$ gives a Moore-Penrose pseudo-inverse of matrix A.

Reference

The following are some definitions related to the above questions.

1. Matrix norms

- $\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{m}\left|a_{i j}\right|$.
- $\|A\|_{1}=\max _{1 \leq j \leq m} \sum_{i=1}^{m}\left|a_{i j}\right|$.
- $\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}$, where $\rho(B)$ denotes the spectral radius of the matrix B (the maximum modulus of an eigenvalue).

2. Grid-functions norms For a grid function $e=\left(e_{0}, \cdots, e_{N}\right)$ on a uniform grid with spacing h,

- $\|e\|_{\infty}=\max _{0 \leq i \leq N}\left|e_{i}\right|$.
- $\|e\|_{1}=h \sum_{i=0}^{N}\left|e_{i}\right|$.
- $\|e\|_{2}=\left(h \sum_{i=0}^{N}\left|e_{i}\right|^{2}\right)^{1 / 2}$.

3. The Moore-Penrose pseudo-inverse is a matrix X of the same dimensions as A^{H} satisfying four conditions:
(i) $A X A=A$, (ii) $X A X=X$, (iii) $(A X)^{H}=A X$, (iv) $(X A)^{H}=X A$.
