國立成功大學應用數學所 數値分析 博士班資格考 June，17， 2011

1．（99上）Consider the initial value problem

$$
\text { (I.V.P.) }\left\{\begin{array}{l}
y^{\prime}=f(t, y), \quad a \leq t \leq b \\
y(a)=\alpha
\end{array}\right.
$$

（a）（易）Show that

$$
y^{\prime}\left(t_{i}\right)=\frac{-3 y\left(t_{i}\right)+4 y\left(t_{i+1}\right)-y\left(t_{i+2}\right)}{2 h}+\frac{h^{2}}{3} y^{\prime \prime \prime}\left(\xi_{i}\right),
$$

for some ξ_{i} with $t_{i} \leq \xi_{i} \leq t_{i+2}$ ．${ }^{(5 \%)}$
（b）（普）Part（a）suggests the difference method

$$
w_{i+2}=4 w_{i+1}-3 w_{i}-2 h f\left(t_{i}, w_{i}\right), \quad \text { for } \quad i=0,1, \ldots, n-2
$$

Analyze this method for consistency，stability and convergence． （15\％）

2．（99下，難）Consider the initial－value problem

$$
y^{\prime}=f(t, y), \text { for } a \leq t \leq b \text { with } y(a)=\alpha
$$

Let

$$
\begin{aligned}
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+h \phi\left(t_{i}, w_{i}, h\right) \text { for } i>0,
\end{aligned}
$$

and

$$
\begin{aligned}
& \widetilde{w}_{0}=\alpha \\
& \widetilde{w}_{i+1}=\widetilde{w}_{i}+h \widetilde{\phi}\left(t_{i}, \widetilde{w}_{i}, h\right) \text { for } i>0,
\end{aligned}
$$

give two one－step methods for approximating solution of $y(t)$ with local truncation error $\tau_{i+1}(h)=O\left(h^{n}\right)$ and $\widetilde{\tau}_{i+1}(h)=O\left(h^{n+1}\right)$ ，respectively， i．e．，

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h \phi\left(t_{i}, y\left(t_{i}\right), h\right)+O\left(h^{n+1}\right)
$$

and

$$
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h \widetilde{\phi}\left(t_{i}, y\left(t_{i}\right), h\right)+O\left(h^{n+2}\right) .
$$

Please use these two methods to construct an adaptive step－size control method for the considering initial－value problem．（15\％）

3．（91上，易）Is it possible to use $a f(x+h)+b f(x)+c f(x-h)$ with suitable chosen coefficients a, b, c to approximate $f^{\prime \prime}(x)$ ？How many function values are needed to approximate $f^{\prime \prime}(x)$ ？（10\％）

4．（易）Suppose $S, T \in \mathbb{R}^{n \times n}$ are lower triangular matrices and that $(S T-\lambda I) x=b$ is a nonsingular system．Give an $O\left(n^{2}\right)$ algorithm for computing x ．（10\％）

5．（普）Let

$$
A=\left[\begin{array}{cc}
\alpha & u^{T} \\
0 & T
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

where $T \in \mathbb{R}^{2 \times 2}$ contains a pair of complex conjugate eigenvalues of matrix A ．Give an algorithm for computing an orthogonal matrix $Q \in$ $\mathbb{R}^{3 \times 3}$ such that

$$
Q^{T} A Q=\left[\begin{array}{cc}
\widetilde{T} & v \\
0 & \alpha
\end{array}\right] \in \mathbb{R}^{3 \times 3}
$$

with $\lambda(\widetilde{T})=\lambda(T) .\left({ }_{(15 \%)}\right.$
6．（易）Let $x=(1,0,4,6,3,4)^{T}$ ．Find a Householder transformation H and a positive number α so that $H x=(1, \alpha, 4,6,0,0)^{T}$ ．${ }_{(10 \%)}$

7．（普）Explain how the single－shift QR step $H-\mu I=Q R, \bar{H}=R Q+\mu I$ can be carried out implicitly．That is，show how the transition from \bar{H} to H can be carried out without substracting the shift μ from the diagonal of H ．（10\％）

8．（普）Consider the abstract saddle point problem

$$
\left[\begin{array}{cc}
A & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

Suppose that an Uzawa－type algorithm is adopted for solving the saddle point problem，that is，for x_{0}, y_{0} given suitably，vectors $\left(x_{i}^{T}, y_{i}^{T}\right)^{T}$ ， $i=1,2,3, \ldots$ ，are sequentially generated by

$$
\begin{aligned}
x_{i+1} & =x_{i}+Q_{A}^{-1}\left(f-\left(A x_{i}+B^{T} y_{i}\right)\right) \\
y_{i+1} & =y_{i}+\tau\left(B x_{i+1}-g\right)
\end{aligned}
$$

where Q_{A} is an approximation to A ．Determine Q_{A} and τ so that the Uzawa－type algorithm is convergent．（10\％）

