General Analysis PhD Qualify Exam. March 4, 2011
(E: easy, M:moderate, D:difficult)
The following general measure space is denoted by ($\mathbf{X}, \mathfrak{M}, \mu$).

1. (E, 10%) The Cantor set $C=[0,1] \backslash\left[\left(\frac{1}{3}, \frac{2}{3}\right) \cup\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right) \cup \cdots\right]$. Explain that the Cantor set C is a measure zero Borel set and the cardinal number $|C|=|\mathrm{R}|$ is uncountable.
2. (E, 15\%) State Hölder's and Minkowski's inequalities. Prove one of them.
3. (M, 15\%) (a) Let $\mathbf{X} \neq \emptyset, \mathcal{E}$ be a collection of subsets of \mathbf{X} and $\mathfrak{M}(\mathcal{E})$ be the σ-algebra generated by \mathcal{E}. Give a sufficient condition on \mathcal{E} such that an additive set function on it can uniquely extend a measure on $\mathfrak{M}(\mathcal{E})$. (b) For example, let $\mathbf{X}=\{a, b, c, d\}$ be a four-element set, let $\mathcal{E}=$ $\{\{a, b\},\{b, c\}\}$, then $\mathfrak{M}(\mathcal{E})=$? Give two measures $\mu \neq \nu$ on $\mathfrak{M}(\mathcal{E})$ but $\mu(E)=\nu(E)$, for all $E \in \mathcal{E}$ and $\mu(\mathbf{X})=\nu(\mathbf{X})<\infty$.
4. (M, 20\%, 2008,2) Suppose that $\left\{f_{n}\right\}_{n \in \mathbf{N}}$ is a sequence of functions in $L^{1}(\mu)$, converging almost everywhere to an $L^{1}(\mu)$ function f. Suppose also that $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{1}=\|f\|_{1}$.
(a) Prove that for every measurable set $A, \lim _{n \rightarrow \infty} \int_{A}\left|f_{n}\right| d \mu=\int_{A}|f| d \mu$.
(b) Prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{1}=0$.
5. (M, 10\%, 2004,9) If $p>0$ and $\int_{\mathrm{X}}\left|f-f_{n}\right|^{p} d \mu \rightarrow 0$ as $n \rightarrow \infty$, show that $\left\{f_{n}\right\}$ converges in measure on \mathbf{X} to f.
6. (M, $15 \%, 2006,2)$ Let (X, \mathfrak{M}, μ) be a σ-finite measure space. Suppose that ν be a finite measure defined on \mathfrak{M} such that ν is absolutely continuous with respect to μ. Let g be the Radon-Nikodym derivative of ν with respect to μ. Prove that $\int_{\mathbf{X}} f d \nu=\int_{\mathbf{X}} f g d \mu$.
7. (M, 15\%) Let H be a Hilbert space, and let M be a non-trivial closed subspace of H, i.e. $M \neq\{0\}$. Let P_{M} be the orthogonal projection of H onto M, i.e. for any $x \in H$, we have $P_{M} x \in M$ and $x-P_{M} x \in M^{\perp}$. You may assume without proof that P_{M} is linear. Show that the operator norm $\left\|P_{M}\right\|_{o p}=1, P_{M}^{2}=P_{M}$ and $P_{M}=P_{M}^{*}$. (i.e. orthogonal projections are linear idempotent self-adjoint contractions)
