General Analysis PhD Qualify Exam. March 4, 2011

(E: easy, M:moderate, D:difficult)

The following general measure space is denoted by $(\mathbf{X}, \mathfrak{M}, \mu)$.

- 1. (E, 10%) The Cantor set $C = [0, 1] \setminus [(\frac{1}{3}, \frac{2}{3}) \cup (\frac{1}{9}, \frac{2}{9}) \cup (\frac{7}{9}, \frac{8}{9}) \cup \cdots]$. Explain that the Cantor set C is a measure zero Borel set and the cardinal number $|C| = |\mathbf{R}|$ is uncountable.
- 2. (E, 15%) State Hölder's and Minkowski's inequalities. Prove one of them.
- 3. (M, 15%) (a) Let X ≠ Ø, E be a collection of subsets of X and M(E) be the σ-algebra generated by E. Give a sufficient condition on E such that an additive set function on it can uniquely extend a measure on M(E). (b) For example, let X = {a, b, c, d} be a four-element set, let E = {{a, b}, {b, c}}, then M(E) =? Give two measures µ ≠ ν on M(E) but µ(E) = ν(E), for all E ∈ E and µ(X) = ν(X) < ∞.
- 4. (M, 20%, 2008,2) Suppose that $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of functions in $L^1(\mu)$, converging almost everywhere to an $L^1(\mu)$ function f. Suppose also that $\lim_{n\to\infty} ||f_n||_1 = ||f||_1$.

(a) Prove that for every measurable set A, $\lim_{n\to\infty} \int_A |f_n| d\mu = \int_A |f| d\mu$. (b) Prove that $\lim_{n\to\infty} ||f_n - f||_1 = 0$.

- 5. (M, 10%, 2004,9) If p > 0 and $\int_{\mathbf{X}} |f f_n|^p d\mu \to 0$ as $n \to \infty$, show that $\{f_n\}$ converges in measure on \mathbf{X} to f.
- 6. (M, 15%, 2006, 2) Let $(\mathbf{X}, \mathfrak{M}, \mu)$ be a σ -finite measure space. Suppose that ν be a finite measure defined on \mathfrak{M} such that ν is absolutely continuous with respect to μ . Let g be the *Radon-Nikodym* derivative of ν with respect to μ . Prove that $\int_{\mathbf{X}} f \, d\nu = \int_{\mathbf{X}} f g \, d\mu$.
- 7. (M, 15%) Let H be a *Hilbert* space, and let M be a non-trivial closed subspace of H, i.e. $M \neq \{0\}$. Let P_M be the orthogonal projection of Honto M, i.e. for any $x \in H$, we have $P_M x \in M$ and $x - P_M x \in M^{\perp}$. You may assume without proof that P_M is linear. Show that the operator norm $\|P_M\|_{op} = 1$, $P_M^2 = P_M$ and $P_M = P_M^*$. (i.e. orthogonal projections are linear idempotent self-adjoint contractions)