PhD Qualify Exam, PDE, Mar. 04, 2011

Show all works

E: easy, M: moderate, D: difficult
1.(M) Find the solution for the problem

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=0, \tag{1}\\
u(x, 0)=0, \\
u(0, t)=h(t)
\end{array} \quad x>0, t>0,\right.
$$

where $h(0)=0$.
2.(M) Use the Fourier transform method to solve the initial value problem $\left\{\begin{array}{l}u_{t}=u_{x x}, x \in R, t>0, \\ u(x, 0)=f(x), x \in R\end{array}\right.$ And prove that u satisfies the following inequality, for $1 \leq q \leq p \leq \infty$ and $t>0$,

$$
\|u(\cdot, t)\|_{L^{p}(R)} \leq(4 \pi t)^{-\frac{1}{2}\left(\frac{1}{q}-\frac{1}{p}\right)}\|f\|_{L^{q}(R)}
$$

3.(M) Let $\lambda \in R, a>0$, and u be a smooth function defined on a neighborhood of $D=\{(x, y) \in$ $\left.R^{2} \mid x^{2}+y^{2} \leq 1\right\}$ such that $\left\{\begin{array}{ll}\Delta u+\lambda u=0, & \text { in } x^{2}+y^{2}<1, \\ \partial u / \partial n=-a u, & \text { on } x^{2}+y^{2}=1,\end{array}\right.$ where n is the unit outward normal vector to ∂D. Prove that if u is not identically zero in $x^{2}+y^{2}<1$, then $\lambda>0$.
4.(E) Let $D=\left\{\mathbf{x} \in R^{3} \mid z>0\right\}$ and $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right) \in D$. Let $u\left(\mathbf{x}_{0}\right)=\frac{z_{0}}{2 \pi} \iint_{\partial D} \frac{h(\mathbf{x})}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{3}} d S$. Show that $u\left(x_{0}, y_{0}, z_{0}\right) \rightarrow h\left(x_{0}, y_{0}\right)$ as $z_{0} \rightarrow 0$.
5.(E) Let $F: R^{n} \times R \times R^{n}$ be a smooth function of (p, z, x). Assume that u is a smooth solution to $F(D u, u, x)=0$ and $x(s)$ is a smooth curve. Prove that if $p(s)=D u(x(s)), z(s)=u(x(s))$, and $x_{i}^{\prime}(s)=\frac{\partial F}{\partial p_{i}}$, then $p_{i}^{\prime}(s)=\frac{\partial F}{\partial x_{i}}-\frac{\partial F}{\partial z} p_{i}$.
6.(E) By using the method of characteristics, find an explicit local solution to $u_{t}+\frac{1}{2}\left(\left(u_{x}\right)^{2}+x^{2}\right)=0$ if $t>0, x \in R$, with initial condition $u(x, 0)=x^{2} / 2$.
7.(D) Solve the wave equation for infinite vibrating string $u_{t t}=c^{2}(x) u_{x x}$, where $c(x)= \begin{cases}c_{1}, & x<0 \\ c_{2}, & x>0 .\end{cases}$

Let a wave $u(x, t)=f\left(x-c_{1} t\right)$ come in from the left, see the figure below. Thus the initial conditions are $u(x, 0)=f(x)$ and $u_{t}(x, 0)=-c_{1} f^{\prime}(x)$. Assume that $u(x, t)$ and $u_{x}(x, t)$ are continuous everywhere. Also give an interpretation for the solution you find.
[10\%]

Figure 1:

