國立成功大學應用數學所 數値分析 博士班資格考
 September，23， 2011

1．（91上，Easy）（10\％）；Is it possible to use $a f(x+h)+b f(x)+c f(x-h)$ with suitable chosen coefficients a, b, c to approximate $f^{\prime \prime}(x)$ ？How many function values are needed at least to approximate $f^{\prime \prime}(x)$ ？

2．（94下，Average）（10\％）；Find the constants $A_{0}, A_{1}, A_{2}, x_{0}, x_{1}$ and x_{2} such that the Gaussian quadrature rule

$$
\int_{-1}^{1} f(x) d x \approx A_{0} f\left(x_{0}\right)+A_{1} f\left(x_{1}\right)+A_{2} f\left(x_{2}\right)
$$

is exact for $f(x)$ in Π_{5} which stands for the set of polynomials of degree less than or equal to 5 ．

3．（97上，Easy）（10\％）；Write an efficient algorithm for evaluating

$$
u=\sum_{i=1}^{n} \prod_{j=1}^{i} d_{j}
$$

4．（99上，Average）；Consider a linear system $A x=b$ where

$$
A=\left[\begin{array}{lll}
1 & 0 & \alpha \\
0 & 1 & 0 \\
\alpha & 0 & 1
\end{array}\right]
$$

（a）Choose the range of α so that A is positive definite．（5\％）
（b）Find a range of α so that Jacobi iteration converges．（5\％）
（c）Find a range of α so that Gauss－Seidel iteration converges．（5\％）
5．（Easy）；
（a）If a numerical solution converges to the exact solution in the max－ norm，does it converge in the 1－norm？（5\％）
（b）If a numerical solution converges to the exact solution in the 1－ norm，does it converge in the max－norm？（5\％）
6. (Difficult) ${ }_{(10 \%)}$; Consider the linear boundary value problem with Dirichlet boundary conditions:

$$
\begin{aligned}
& u^{\prime \prime}(x)=f(x) \quad \text { for } 0<x<1 \\
& u(0)=\alpha, \quad u(1)=\beta
\end{aligned}
$$

We attempt to compute a grid function consisting of values U_{0}, U_{1}, \ldots, U_{m}, U_{m+1} where U_{j} is our approximation to the solution $u\left(x_{j}\right)$. Here $x_{j}=j h$ and $h=1 /(m+1)$ is the mesh width, the distance between grid points. From the boundary conditions we know that $U_{0}=\alpha$ and $U_{m+1}=\beta$ and so we have m unknown values U_{1}, \ldots, U_{m} to compute. We solve this problem with a centered difference scheme,

$$
\frac{1}{h^{2}}\left(U_{j-1}-2 U_{j}+U_{j+1}\right)=f\left(x_{j}\right) \quad \text { for } j=1,2, \ldots, m
$$

The problem can be written in the form $A U=F$ where U is the vector of unknowns $U=\left[U_{1}, U_{2}, \ldots, U_{m}\right]^{T}$ and

$$
A=\frac{1}{h^{2}}\left[\begin{array}{cccccc}
-2 & 1 & & & & \\
1 & -2 & 1 & & & \\
& 1 & -2 & 1 & & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & -2 & 1 \\
& & & & 1 & -2
\end{array}\right], \quad F=\left[\begin{array}{c}
f\left(x_{1}\right)-\alpha / h^{2} \\
f\left(x_{2}\right) \\
f\left(x_{3}\right) \\
\vdots \\
f\left(x_{m-1}\right) \\
f\left(x_{m}\right)-\beta / h^{2}
\end{array}\right]
$$

Show that $\left\|A^{-1}\right\|_{\infty}$ is uniformly bounded as $h \rightarrow 0$ and the numerical scheme is stable in the max-norm.
7. (Easy) (10\%); Consider the linear boundary value problem with Dirichlet boundary conditions:

$$
\begin{aligned}
& u^{\prime \prime}(x)=f(x) \quad \text { for } 0<x<1 \\
& u(0)=\alpha, \quad u(1)=\beta
\end{aligned}
$$

We first solve the problem using the second order difference method and the numerical scheme can be written as $A U=F$ where U is the vector of unknowns $U=\left[U_{1}, U_{2}, \ldots, U_{m}\right]^{T}$ and U_{j} is our approximation to the solution $u\left(x_{j}\right)$.

The local truncation error of the numerical scheme is
$\tau_{j}=\frac{1}{h^{2}}\left(u\left(x_{j-1}\right)-2 u\left(x_{j}\right)+u\left(x_{j+1}\right)\right)-f\left(x_{j}\right)=\frac{1}{12} h^{2} u^{\prime \prime \prime \prime}\left(x_{j}\right)+O\left(h^{4}\right)$.
(a) Suppose that $f(x)$ is sufficiently smooth and given explicitly, use the method of deffered corrections to derive a fourth order scheme.
(b) Suppose that we only have the value of $f(x)$ at the grid points (but we know that the underlying function is sufficiently smooth), use the method of deffered corrections to derive a fourth order scheme.
8. (Average) (10\%); Consider the Poisson problem with Dirichlet boundary conditions:

$$
\begin{aligned}
& u_{x x}+u_{y y}=f(x, y) \quad \text { for } 0<x, y<1, \\
& u(0, y)=\alpha_{0}(y), \quad u(1, y)=\alpha_{1}(y), \\
& u(x, 0)=\beta_{0}(x), \quad u(x, 1)=\beta_{1}(x),
\end{aligned}
$$

We attempt to compute a grid function consisting of values $U_{0,0}, U_{1,0}$, $\ldots, U_{m+1, m}, U_{m+1, m+1}$ where $U_{i, j}$ is our approximation to the solution $u\left(x_{i}, y_{j}\right)$. Here $x_{i}=i h, y_{j}=j h$ and $h=1 /(m+1)=\Delta x=\Delta y$. Solve this problem with a centered difference scheme,
$\frac{1}{h^{2}}\left(U_{i-1, j}+U_{i+1, j}+U_{i, j-1}+U_{i, j+1}-4 U_{i, j}\right)=f_{i, j}=f\left(x_{i}, y_{j}\right) \quad$ for $i, j=1,2, \ldots, m$,
and write the equations in the form $A U=F$. Show that $\left\|A^{-1}\right\|_{2}$ is uniformly bounded as $h \rightarrow 0$ and the numerical scheme is stable in the 2-norm.
9. (Easy) (15\%); Consider the initial value problem:

$$
\frac{d u}{d t}=f(u(t)), \quad u(0)=u_{0}
$$

wheret $\in[0, T]$ is the time variable, $T>0, u \in \mathbb{R}$ is a real-valued function, and the function $f \in \mathbb{R}$ is assumed to be Lipschitz continuous with respect to u for $t \in[0, T]$, yielding the existence and uniqueness of the solution for this problem.

Denote U^{n} to be the numerical approximation of u at time, $t_{n}=n k$, where k is the time step. Which of the following Linear Multistep Methods are convergent? For the ones that are not, are they inconsistent, or not zero-stable, or both?
(a) $U^{n+2}=\frac{1}{2} U^{n+1}+\frac{1}{2} U^{n}+2 k f\left(U^{n+1}\right)$
(b) $U^{n+1}=U^{n}$
(c) $U^{n+4}=U^{n}+\frac{4}{3} k\left(f\left(U^{n+3}\right)+f\left(U^{n+2}\right)+f\left(U^{n+1}\right)\right)$
(d) $U^{n+3}=-U^{n+2}+U^{n+1}+U^{n}+2 k\left(f\left(U^{n+2}\right)+f\left(U^{n+1}\right)\right)$.

