成功大學 99 學年度碩士班甄試入學考試（基礎數學）試題 共 2 頁 PartI．高等微積分

Prove or disprove the following statements
1．$(10) \varnothing \neq S \subset \mathbb{R}, S$ is comncted $\Longrightarrow S$ is an interval．
2．（10）$x \in \mathbb{R} \backslash\{2 m \pi: m \in \mathbb{Z}\} \Longrightarrow\left|\sum_{k=1}^{n} e^{i k x}\right| \leq \frac{1}{\left|\sin \frac{x}{2}\right|}$
3．（10）If $\sum a_{n}$ is convergent and $\left\{b_{n}\right\}$ is a convergent sequence，then $\sum a_{n} b_{n}$ is convergont．

4．（10）

$$
y= \begin{cases}\sin \frac{1}{x}, & x \in(0,1] \\ 0 . & x \in[-1,0]\end{cases}
$$

The set $S=\{(x, y) \mid x \in[-1,1]\} \subset \mathbb{R}^{2}$ is arcwise connected．
5．（10）

$$
\lim _{m \rightarrow \infty}\left[\lim _{n \rightarrow \infty} \cos ^{7 x}(m!\sqrt{7} \pi)\right]=-1
$$

6．（10）The sequence $\left\{x^{n}\right\}_{n=1}^{\infty}$ converges in $[0,1]$ and the convergence is not uniform．

7．（20）Let S be a subset of a metric space．Then S is compact if and only if every sequence in S contains a convergent subsequence in S ．

8．（20）Let V be a subspace of the Fuclidean space $\left(\mathbb{R}^{2009}, d\right)$ ．Given $x \in \mathbb{R}^{2008}$ ，there exists a unique $y \in V$ with $d(x, y)=\inf _{z \in V} d(x, z)$ ．

Part II．線性代數

$$
\text { In the following, } \mathbb{R} \text { denote the set of real numbers. }
$$

1．（10 points total，2pts each）For each of the following statement，answer＂ T ＂for true or＂F＂for false．No need to justify your answer．

In the following，m and n are both positive integers．
（a）Let $\phi: \mathbb{R}^{m} \mapsto \mathbb{R}^{n}$ be a linear map．Then the kernel $\phi^{-1}=\left\{v \in \mathbb{R}^{m} \mid \phi(v)=\right.$ $0\}$ forms a sub－vector space of \mathbb{R}^{m} ．
（b）For any $m \times n$ matrix A and $n \times m$ matrix $B, \operatorname{det} A B=\operatorname{det} B A$ ．
（c）If A is a square matrix and B is similar to A ，then A and B have the same eigenvectors．
（d）Let A be a 4×4 matrix with characteristic polynomial

$$
x(x-1)(x-2)^{2} \text { and minimal polynomial } x(x-1)(x-2) .
$$

Then A can be diagonalized．
（e）If $T: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ given by $T(x, y)=(2 x+y+1, x-y)$ ，then there exists a 2×2 real matrix A such that $T(x, y)=A \cdot(x, y)^{t}$ ，where $(x, y)^{t}$ denotes the transpose of (x, y) ．

Show all your work for the rest of problems．

2．（ 10 pts ）Let E be the real vector space spanned by $v_{1}=(1,1,0,0), v_{2}=(0,2,-1,1)$ ． Let $v=(0,2,0,4)$ ．Find the orthogonal projection（with respect to the standard inner product）of v into E ．

3．（10pts）
（a）（5pts）Let A be an $m \times n$ matrix over \mathbb{R} ．If $A^{t} A x=0$ for some $x \in \mathbb{R}^{n}$ ， show that $A x=0$ ．
（b）（5pts）Use part（a）to show that if the columns of A are linearly indepen－ dent，then $A^{t} A$ is invertible．

4．Let $A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1\end{array}\right)$ ．
（a）（10pts）Find an orthogonal matrix P and a diagonal matrix D such that $P^{-1} A P=D$ ．
（b）（10pts）Find the matrix $B=A^{33}-5 A^{32}+3 A^{31}+9 A^{30}+A^{3}-5 A^{2}+4 A+4 I$ ， where I denotes the 3×3 identity matrix．

