成功大學 98 學年度碩士班甄試入學考試(基礎數學)試題

Pert I.

Advanced Calculus

1. Suppose that $\lim_{x\to\infty} x \cdot f(x) = L$. Prove that $\lim_{x\to\infty} f(x) = 0$. (10 points)

2. Define a function f by

$$f(x) = \begin{cases} x \cdot \sin(1/x), & x \neq 0\\ 0, & x = 0. \end{cases}$$

Prove or disprove that f is uniformly continuous on \mathbb{R} . (10 points)

3. Prove that

$$\left| \int_{0}^{1} x \cdot \sin(1/x) \, dx \right| \le \left(\int_{0}^{1} x^{2} \cdot \sin^{2}(1/x) \, dx \right)^{1/2}.$$

(Hint: $(\sum a_{k}b_{k})^{2} \le \sum a_{k}^{2} \sum b_{k}^{2}.$) (10 points)

4. Let f be a smooth function on (-1, 1) and $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-1, 1)$. Let $\{x_m\}$ be a sequence with $x_m \neq 0$ for all $m \in \mathbb{N}$. Assume that $\{x_m\}$ converges to zero with $f(x_m) = 0$. Show that f = 0 on (-1, 1). (10 points)

5. For $x \in \mathbb{R}^3$, let $\rho(x)$ be a charge density that is continuous and such that $\rho(x) = 0$ for $||x||_2 > 1$. Show that the electrostatic potential, given by

$$\phi(x) = \frac{1}{4\pi} \iiint_{\mathbb{R}^3} \rho(y) / \|x - y\|_2 \, dy.$$

is a convergent integral for each $x \in \mathbb{R}^3$. (10 points)

Part II. Linear Algebra (2008) Please answer all questions and show all your works (50 points)

We use the following notations:

 \mathbb{R} : the set of all real numbers,

 \mathbb{C} : the set of complex numbers,

 A^T : the transpose matrix of the $n \times n$ matrix A,

 I_n : the $n \times n$ identity matrix,

det A : the determinant of the $n \times n$ matrix A.

- 1. (15 points) An $n \times n$ matrix A with entries in \mathbb{R} is said to be an orthogonal matrix if $AA^T = I_n$.
 - (a) (3 points) Assume that A is an $n \times n$ orthogonal matrix with entries in \mathbb{R} . Prove that $\det A = 1$ or $\det A = -1$.
 - (b) (4 points) Assume that A is a 2×2 orthogonal matrix with entries in \mathbb{R} . Prove that there is an orthogonal 2×2 matrix U such that

$$U^{T}AU = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 or $U^{T}AU = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ for some $\alpha \in [0, 2\pi]$.

(c) (8 points) Assume that A is a 3×3 orthogonal matrix with entries in \mathbb{R} such that det A = 1. Prove that there is an orthogonal 3×3 matrix U such that

$$U^{T}AU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{or} \quad U^{T}AU = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \text{ for some } \alpha \in [0, 2\pi].$$

- 2. (15 points) Let A be an $n \times n$ matrix with entries in \mathbb{R} and let $\chi(x)$ be the characteristic polynomial of A. Assume that there is a $\lambda \in \mathbb{R}$ such that $\chi(\lambda) = 0$.
 - (a) (5 points) Prove that there is a nonzero $n \times 1$ matrix with entries in \mathbb{R} such that $Av = \lambda v$.
 - (b) (10 points) Assume that χ(x) = (x − λ)² f(x) for some polynomial f(x) with coefficient in ℝ. Prove that either the dimension of the kernel of A − λI is greater 2 or there are two nonzero n × 1 matrices v₁ and v₂ with entries in ℝ such that Av₁ = λv₁ and Av₂ = λv₂ + v₁.
- 3. (10 points) Let V be the set of all 2×2 matrices with entries in C. Let f denote the linear transformation from V to V defined by $f(A) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} A A \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for all $A \in V$. Find a Jordan canonical form of f and an ordered basis for V so that the matrix associated to f with respect to the ordered basis is the Jordan canonical form.
- 4. (10 points) Let {e₁, e₂, e₃} be a basis for the a 3-dimensional vector space V over ℝ. Let g be a linear transformation from V to V defined by g(∑_{i=1}³ a_ie_i) = (-5a₂ + a₃)e₁ + a₂e₂ + (2a₁ + 2a₂)e₃ for all a₁, a₂, a₃ ∈ ℝ. A subspace W of V is said to be an invariant subspace of g if g(W) ⊆ W.
 - (a) (2 points) Find the matrix representation of g with respect to the basis $\{e_1, e_2, e_3\}$.
 - (b) (5 points) Find all invariant subspaces of g.
 - (c) (3 points) For each invariant subspace W, find a basis for the quotient vector space V/W.

Page 1 of 1