成功大學 98 學年度碩士班甄試入學考試（基礎数學）試題

Pert I．

Advanced Calculus

1．Suppose that $\lim _{x_{x \rightarrow \infty}} x \cdot f(x)=L$ ．Prove that $\lim _{x \rightarrow \infty} f(x)=0$ ．（10 point：

2．Define a function f by

$$
f(x)=\left\{\begin{array}{l}
x \cdot \sin (1 / x) \quad x \neq 0 \\
0, \quad x=0
\end{array}\right.
$$

I＇rove or disprove that f is miformly（outinuous on \mathbb{R} ．（ 10 perints）
3．Prove that

$$
\left|\int_{0}^{1} x \cdot \sin (1 / x) d x\right| \leq\left(\int_{0}^{1} x^{2} \cdot \sin ^{2}(1 / x) d x\right)^{1 / 2}
$$

（IIInt：$\left.\left.\sum a_{k} b_{k}\right)^{2} \leq \sum a_{k}^{2} \sum b_{k}^{2}.\right) \quad$（ 10 points）
1．Let f be a smooth function on $(-1,1)$ and $f(x)=\sum_{n=1}^{\infty} a_{n} \cdot r^{n}$ for $x \subset(-1.1)$ ．．．a $\left\{x_{m}\right\}$ be a sequence with $x_{m} \neq 0$ for all $m \in \mathbb{N}$ ．Assume that $\left\{x_{m}\right\}$ couverges to raro with $f\left(x_{m}\right)=0$ ．Show that $f=0$ on (-1.1) ．（ 10 points）

5．For $x \in \mathbb{R}^{3}$ ．let $\rho(x)$ be a charge density that is continuous and such that $\rho(x)=0$ for $\|\cdot x\|_{2}>1$ ．Show that the electrostatic potential，given by

$$
\phi(x)=\frac{1}{4 \pi} \iiint_{\mathbb{R}^{3}} \rho(y) /\|x-y\|_{2} d y
$$

is a convergent integral for each $x \in \mathbb{R}^{3}$ ．（10）points）

We use the following notations：
\mathbb{R} ：the set of all real numbers，
\mathbb{C} ：the set of complex numbers，
A^{T} ：the transpose matrix of the $n \times n$ matrix A ，
I_{n} ：the $n \times n$ identity matrix，
$\operatorname{det} A$ ：the determinant of the $n \times n$ matrix A ．
1．（15 points）An $n \times n$ matrix A with entries in \mathbb{R} is said to be an orthogonal matrix if $A A^{T}=I_{n}$ ．
（a）（ 3 points）Assume that A is an $n \times n$ orthogonal matrix with entries in \mathbb{R} ．Prove that $\operatorname{det} A=1$ or $\operatorname{det} A=-1$ ．
（b）（4 points）Assume that A is a 2×2 orthogonal matrix with entries in \mathbb{R} ．Prove that there is an orthogonal 2×2 matrix U such that

$$
U^{T} A U=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { or } \quad U^{T} A U=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) \text { for some } \alpha \in[0,2 \pi]
$$

（c）（8 points）Assume that A is a 3×3 orthogonal matrix with entries in \mathbb{R} such that $\operatorname{det} A=1$ ． Prove that there is an orthogonal 3×3 matrix U such that

$$
U^{T} A U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { or } \quad U^{T} A U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right) \text { for some } \alpha \in[0,2 \pi]
$$

2．（ 15 points）Let A be an $n \times n$ matrix with entries in \mathbb{R} and let $\chi(x)$ be the characteristic poly－ nomial of A ．Assume that there is a $\lambda \in \mathbb{R}$ such that $\chi(\lambda)=0$ ．
（a）（5 points）Prove that there is a nonzero $n \times 1$ matrix with entries in \mathbb{R} such that $A v=\lambda \nu$ ．
（b）（10 points）Assume that $\chi(x)=(x-\lambda)^{2} f(x)$ for some polynomial $f(x)$ with coefficient in \mathbb{R} ．Prove that either the dimension of the kernel of $A-\lambda I$ is greater 2 or there are two nonzero $n \times 1$ matrices ν_{1} and ν_{2} with entries in \mathbb{R} such that $A v_{1}=\lambda v_{1}$ and $A v_{2}=\lambda v_{2}+v_{1}$ ．

3．（ 10 points）Let V be the set of all 2×2 matrices with entries in \mathbb{C} ．Let f denote the linear transformation from V to V defined by $f(A)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) A-A\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ for all $A \in V$ ．Find a Jordan canonical form of f and an ordered basis for V so that the matrix associated to f with respect to the ordered basis is the Jordan canonical form．

4．（10 points）Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis for the a 3 －dimensional vector space V over \mathbb{R} ．Let g be a linear transformation from V to V defined by $g\left(\sum_{i=1}^{3} a_{i} e_{i}\right)=\left(-5 a_{2}+a_{3}\right) e_{1}+a_{2} e_{2}+\left(2 a_{1}+\right.$ $\left.2 a_{2}\right) e_{3}$ for all $a_{1}, a_{2}, a_{3} \in \mathbb{R}$ ．A subspace W of V is said to be an invariant subspace of g if $g(W) \subseteq W$ ．
（a）（2 points）Find the matrix representation of g with respect to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ ．
（b）（5 points）Find all invariant subspaces of g ．
（c）（3 points）For each invariant subspace W ，find a basis for the quotient vector space V / W ．

