國立成功大學九十五學年度甄試入學考試(基礎數學試題) [共3頁/第1頁]

Part I. LINEAR ALGEBRA

1. (8 points) Let A be a 3×4 matrix over the real number field \mathbb{R} , and let $\{(2,3,1,0)\}$ be a basis for the nullspace of A.

(a) What is the rank of *A* and the complete solution to $A\mathbf{x} = \mathbf{0}$?

Solution: The dimension of the nullspace is 1, so the rank of *A* is 4 - 1 = 3. The complete solution to Ax = 0 is $x = c \cdot (2, 3, 1, 0)$ for any constant *c*.

(b) Find a basis for the column space of A^T .

Solution: The column space of A^T is the row space of A. The nonzero rows of the row reduced echelon form $\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ form a basis.

2. (a) (4 points) The linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ reflects a vector about the line y = -x and then projects that vector orthogonally onto the *x*-axis. Find the standard matrix for *T*.

Solution: $T\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix}$ and $T\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}-1\\0\end{bmatrix}$ so the matrix representation for *T* is $\begin{bmatrix}0 & -1\\0 & 0\end{bmatrix}$.

(b) (4 points) Suppose $T: \mathbb{R}^4 \to \mathbb{R}^2$ is a linear transformation with T(1,0,0,1) = (2,3) and T(0,1,1,0) = (1,5). Find T(6,2,2,6).

Solution: Let $v_1 = (1,0,0,1)$ and $v_2 = (0,1,1,0)$. Then $v = (6,2,2,6) = 6v_1 + 2v_2$. By linearity,

$$T(v) = T(6v_1 + 2v_2) = 6T(v_1) + 2T(v_2) = 6(2,3) + 2(1,5) = (14,28)$$

- 3. (8 points) Suppose the 3×3 matrix A over \mathbb{R} has eigenvalues 0, 1, and 2 with eigenvectors v_0, v_1, v_2 , respectively.
 - (a) What is the trace of A 2I?

Solution: A - 2I has eigenvalues -2, -1, 0 so its trace is -3.

(b) Solve the equation $Ax = v_1 + v_2$ for *x*.

Solution: $x = av_0 + v_1 + \frac{1}{2}v_2$.

4. (16 points) Let *V* be the vector space \mathbb{R}^3 over \mathbb{R} . The following matrix is a *projection matrix* on *V*: $P = \frac{1}{21} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 4 & -8 \\ -4 & -8 & 16 \end{bmatrix}$.

(a) What subspace W of V does P project onto?

Solution: The projection matrix P projects onto the column space of P which is the line $c \cdot (1, 2, -4)$.

(b) What is the distance from that subspace W to $\mathbf{b} = (5, 4, -2)$? Solution: The vector from **b** to the subspace is

$$\mathbf{e} = \mathbf{b} - P\mathbf{b} = \begin{bmatrix} 5\\4\\-2 \end{bmatrix} - \frac{21}{21} \begin{bmatrix} 1\\2\\-4 \end{bmatrix} = \begin{bmatrix} 4\\2\\2 \end{bmatrix}$$

and the distance is

$$\|\mathbf{e}\| = \sqrt{4^2 + 2^2 + 2^2} = 2\sqrt{6}.$$

(c) What are the three eigenvalues of *P*?

Solution: Since *P* projects onto a line, its three eigenvalues are 0, 0, 1. The eigenvectors for 0 are vectors orthogonal to (1, 2, -4). The eigenvector for 1 is (1, 2, -4).

(d) If you solve $\frac{du}{dt} = -Pu$ (notice minus sign) starting from u(0), the solution u(t) approaches a steady state as $t \to \infty$. Describe that limit vector $u(\infty)$?

Solution: The solution u(t) to the differential equation has the form $u(t) = v_1 e^{-t} + v_2$ where v_1 is in W and v_2 is in the orthogonal complement of W. Then $u(\infty) = v_2$, which is the projection of u(0) onto the orthogonal complement of W. That is, $u(\infty) = u(0) - P(u(0))$.

5. (10 points) Let *n* denote a positive integer, *V* denote an *n*-dimensional vector space, and *T* denote a linear operator on *V*. Suppose $v \in V$ is a nonzero vector such that $T^k v = 0$ for some positive integer *k*. Show that $T^n v = 0$.

Solution: Suppose *k* is the smallest positive integer such that $T^k v = 0$. The vectors $v, Tv, T^2v, ..., T^{k-1}v$ are linearly independent so $k \le n$:

Suppose $c_0v + c_1Tv + c_2T^2v + \dots + c_{k-1}T^{k-1}v = 0$. Applying T^{k-1} to both sides we get $c_0T^{k-1}v = 0$ and so $c_0 = 0$. Now applying T^{k-2} to both sides we get $c_1T^{k-1}v = 0$ and so $c_1 = 0$. Continuing in this fashion, we see that $c_j = 0$ for all j.

Part II. ADVANCED CALCULUS

- 6. (10 points) Let $x_1 = \frac{\pi}{2}$ and suppose that x_n are defined inductively for n = 2, 3, ... by $\cos(x_{n+1}) = \frac{\sin(x_n)}{x_n}$, $0 < x_{n+1} < \frac{\pi}{2}$, for n = 1, 2, ...
 - (a) Prove that $x_{n+1} < x_n$ for n = 1, 2, ... Hint: You may find $\cos(x) = \frac{d}{dx}\sin(x)$ and the Mean Value Theorem useful.

Solution: By the Mean Value Theorem, there exists a $0 < c < x_n$ such that $\sin x_n = \sin x_n - \sin 0 = \cos c (x_n - 0) = \cos c x_n$. This implies that $x_{n+1} = c < x_n$.

(b) Show that the sequence $\{x_n\}_{n=1}^{\infty}$ is convergent.

Solution: Since the set $\{x_n | n \in \mathbb{N}\}$ is nonempty and bounded from below by $0, l = \inf\{x_n | n \in \mathbb{N}\}$ exists. The definition of *l* implies that for each $\varepsilon > 0$ there exists an x_k for some $k \in \mathbb{N}$ such that $l + \varepsilon > x_k$. The result of part (*a*) says that $\{x_n\}_{n=1}^{\infty}$ is decreasing which implies that $l + \varepsilon > x_k \ge x_n > 0$ for all $n \ge k$. Therefore, we get $|x_n - l| < \varepsilon$ for all $n \ge k$ which means that $\lim_{n \to \infty} x_n = l$.

(c) Find explicitly the limit *x* of the sequence $\{x_n\}_{n=1}^{\infty}$.

Solution: Let $f(x) = x \cos x - \sin x$ for $x \in [0, \frac{\pi}{2}]$. To find all possible limits is equivalent to find zeros of f over $[0, \frac{\pi}{2}]$. Note that f(0) = 0 and $f'(x) = -x \sin x < 0$ for all $x \in (0, \frac{\pi}{2}]$, we can conclude that x = 0 is the only zero of f. Hence, $\lim_{x \to \infty} x_n = 0$.

7. (a) (5 points) State what it means for a sequence $\{f_n(x)\}_{n=1}^{\infty}$ of real valued functions on a set $X \subset \mathbb{R}^p$ to converge uniformly to a function f on X.

Solution: $\{f_n\}_{n=1}^{\infty}$ is said to converge uniformly on *X* to *f* if for each $\varepsilon > 0$ there exists a $K(\varepsilon) \in \mathbb{N}$ such that for all $n \ge K(\varepsilon)$ and $x \in X$ then $|f_n(x) - f(x)| < \varepsilon$.

(b) (5 points) Let $F : [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function on the unit square. Let $f_n(t) = F(\frac{1}{n},t)$ and f(t) = F(0,t). Use the definition in part (a) to show that $\{f_n(x)\}_{n=1}^{\infty}$ converges uniformly to f on the interval [0,1].

Solution: Since *F* is continuous on $[0,1] \times [0,1]$, *F* is uniformly continuous there. This implies that for any $\varepsilon > 0$ and any $t \in [0,1]$, there exists a $\delta = \delta(\varepsilon) > 0$ such that if $|x-0| < \delta$ then $|F(x,t) - F(0,t)| < \varepsilon$. Letting $K(\varepsilon) = [\frac{1}{\delta}] + 1$, where $[\frac{1}{\delta}]$ is defined to be the greatest integer less than or equal to $\frac{1}{\delta}$, we note that $n \ge K(\varepsilon) > \frac{1}{\delta}$ implies that $\frac{1}{n} < \delta$. Thus, $|f_n(t) - f(t)| = |F(\frac{1}{n}, t) - F(0, t)| < \varepsilon$ for all $n \ge K(\varepsilon)$. Thus $\{f_n\}_{n=1}^{\infty}$ converges uniformly to *f* on [0, 1]

- 8. (10 points) For each integer $k \ge 1$, let $f_k : \mathbb{R} \to \mathbb{R}$ be differentiable satisfying $|f'_k(x)| \le 1$, for all $x \in \mathbb{R}$, and $f_k(0) = 0$.
 - (a) For each $x \in \mathbb{R}$, prove that the set $\{f_k(x)\}_{k=1}^{\infty}$ is bounded.

Solution: For each $x \in \mathbb{R}$, since $|f_k(x)| = |f_k(x) - f_k(0)| \le |f'_k(c_k)(x-0)| \le |x|$, where c_k lies between x and 0, the set $\{f_k(x)\}_{k=1}^{\infty}$ is bounded.

(b) Use Cantor's diagonal method to show that there is an increasing sequence $n_1 < n_2 < n_3 < \cdots$ of positive integers such that, for every $x \in \mathbb{Q}$, we have $\{f_{n_k}(x)\}$ is a convergent sequence of real numbers.

國立成功大學九十五學年度甄試入學考試(基礎數學試題) [共3頁/第3頁]

Solution: Let $\mathbb{Q} = \{x_1, x_2, \dots\}$. Since $\{f_k(x_1)\}$ is bounded, we can extract a convergent subsequence, denoted $\{f_k^1(x_1)\}$, out of $\{f_k(x_1)\}$. Next, the boundedness of $\{f_k^1(x_2)\}$ implies that we can extract a convergent subsequence, denoted $\{f_k^2(x_2)\}$, out of $\{f_k^1(x_2)\}$. Continuing this way, the boundedness of $\{f_k^j(x_{j+1})\}$ implies that we can extract a convergent subsequence subsequence $\{f_k^{j+1}(x_{j+1})\}$, out of $\{f_k^j(x_{j+1})\}$ for each $j \ge 1$. Let $f_{n_k} = f_k^k$ for each $k \ge 1$. Then $\{f_{n_k}\}$ is a subsequence of $\{f_n\}$ and $\{f_{n_k}\}$ converges at each $x_j \in \mathbb{Q}$.

- 9. (10 points) A function $f : \mathbb{R} \to \mathbb{R}$ is said to be *convex* if for all $x, y \in \mathbb{R}$, $\lambda \in [0,1]$, $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is convex and that f''(x) exists for all $x \in \mathbb{R}$.
 - (a) For any x < y and 0 < h < y x, prove that

$$f(x+h) \leq \frac{y-x-h}{y-x} \cdot f(x) + \frac{h}{y-x} \cdot f(y), \quad \text{and} \quad f(y-h) \leq \frac{h}{y-x} \cdot f(x) + \frac{y-x-h}{y-x} \cdot f(y).$$

Solution: Setting $x + h = \lambda x + (1 - \lambda)y$, we get $\lambda = \frac{y - x - h}{y - x}$ and $1 - \lambda = \frac{h}{y - x}$. Thus

$$f(x+h) = f(\frac{y-x-h}{y-x}x + \frac{h}{y-x}y) \le \frac{y-x-h}{y-x}f(x) + \frac{h}{y-x}f(y).$$

Setting $y - h = \beta x + (1 - \beta)y$, we get $\beta = \frac{h}{y - x}$ and $1 - \beta = \frac{y - x - h}{y - x}$. Thus

$$f(y-h) = f(\frac{h}{y-x}x + \frac{y-x-h}{y-x}y) \le \frac{h}{y-x}f(x) + \frac{y-x-h}{y-x}f(y).$$

(b) Prove that $f'(x) \le f'(y)$ whenever $x \le y$.

Solution: Since

$$f'(x) - f'(y) = \lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h} - \frac{f(y-h) - f(y)}{-h} = \lim_{h \to 0^+} \frac{f(x+h) + f(y-h) - f(x) - f(y)}{h} \le \lim_{h \to 0^+} \frac{f(x) + f(y) - f(x) - f(y)}{h} = 0,$$

where we have used the result of part (a) in the last inequality. We have shown that $f'(x) \le f'(y)$ whenever $x \le y$.

(c) Prove that $f''(x) \ge 0$ for all $x \in \mathbb{R}$.

Solution: The result of part (b) implies that $f''(x) = \lim_{h \to 0^+} \frac{f'(x+h) - f'(x)}{h} \ge 0$, we have $f''(x) \ge 0$ for all $x \in \mathbb{R}$.

10. (10 points) Let $g : \mathbb{R}^p \to \mathbb{R}^p$ belong to class $C^1(\mathbb{R}^p)$, i.e. Dg(x) exists for all $x \in \mathbb{R}^p$ and the mapping $x \to Dg(x)$ is continuous. Assume that there is a constant *a* such that $||Dg(x)|| \le a < 1$ for each $x \in \mathbb{R}^p$.

(a) Show that the function f(x) = x + g(x) for $x \in \mathbb{R}^p$ satisfies $||f(x_1) - f(x_2) - (x_1 - x_2)|| \le a ||x_1 - x_2||$ for all $x_1, x_2 \in \mathbb{R}^p$.

Solution: The Mean Value Theorem implies that there exists a $z = \lambda x_1 + (1 - \lambda) x_2 \in \mathbb{R}^p$ for some $\lambda \in [0, 1]$ such that

$$||f(x_1) - f(x_2) - (x_1 - x_2)|| = ||Dg(z) \cdot (x_1 - x_2)|| \le a ||x_1 - x_2||$$

(b) Show that f in part (a) is a bijection of \mathbb{R}^p into \mathbb{R}^p .

Solution: Since Df = I + Dg and the eigenvalues of Dg are bounded by a < 1, Df is invertible everywhere. The Inverse Function Theorem implies that f is a local bijection. Since the result of part (a) says that f is a global one-to-one function of \mathbb{R}^p into \mathbb{R}^p , f is a bijection of \mathbb{R}^p .