Part I．LINEAR ALGEBRA

1．（8 points）Let A be a 3×4 matrix over the real number field \mathbb{R} ，and let $\{(2,3,1,0)\}$ be a basis for the nullspace of A ．
（a）What is the rank of A and the complete solution to $A \mathbf{x}=\mathbf{0}$ ？
Solution：The dimension of the nullspace is 1 ，so the rank of A is $4-1=3$ ．The complete solution to $A x=0$ is $x=c \cdot(2,3,1,0)$ for any constant c ．
（b）Find a basis for the column space of A^{T} ．
Solution：The column space of A^{T} is the row space of A ．The nonzero rows of the row reduced echelon form $\left[\begin{array}{cccc}1 & 0 & -2 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ form a basis．

2．（a）（4 points）The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ reflects a vector about the line $y=-x$ and then projects that vector orthogonally onto the x－axis．Find the standard matrix for T ．

Solution：$T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ so the matrix representation for T is $\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]$ ．
（b）（4 points）Suppose $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is a linear transformation with $T(1,0,0,1)=(2,3)$ and $T(0,1,1,0)=(1,5)$ ．Find $T(6,2,2,6)$ ．

Solution：Let $v_{1}=(1,0,0,1)$ and $v_{2}=(0,1,1,0)$ ．Then $v=(6,2,2,6)=6 v_{1}+2 v_{2}$ ．By linearity，

$$
T(v)=T\left(6 v_{1}+2 v_{2}\right)=6 T\left(v_{1}\right)+2 T\left(v_{2}\right)=6(2,3)+2(1,5)=(14,28)
$$

3．（ 8 points）Suppose the 3×3 matrix A over \mathbb{R} has eigenvalues 0,1 ，and 2 with eigenvectors v_{0}, v_{1}, v_{2} ，respectively．
（a）What is the trace of $A-2 I$ ？
Solution：$A-2 I$ has eigenvalues $-2,-1,0$ so its trace is -3 ．
（b）Solve the equation $A x=v_{1}+v_{2}$ for x ．
Solution：$x=a v_{0}+v_{1}+\frac{1}{2} v_{2}$ ．
4．（16 points）Let V be the vector space \mathbb{R}^{3} over \mathbb{R} ．The following matrix is a projection matrix on V ：$P=\frac{1}{21}\left[\begin{array}{ccc}1 & 2 & -4 \\ 2 & 4 & -8 \\ -4 & -8 & 16\end{array}\right]$ ．
（a）What subspace W of V does P project onto？
Solution：The projection matrix P projects onto the column space of P which is the line $c \cdot(1,2,-4)$ ．
（b）What is the distance from that subspace W to $\mathbf{b}=(5,4,-2)$ ？
Solution：The vector from \mathbf{b} to the subspace is

$$
\mathbf{e}=\mathbf{b}-P \mathbf{b}=\left[\begin{array}{c}
5 \\
4 \\
-2
\end{array}\right]-\frac{21}{21}\left[\begin{array}{c}
1 \\
2 \\
-4
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right]
$$

and the distance is

$$
\|\mathbf{e}\|=\sqrt{4^{2}+2^{2}+2^{2}}=2 \sqrt{6}
$$

（c）What are the three eigenvalues of P ？
Solution：Since P projects onto a line，its three eigenvalues are $0,0,1$ ．The eigenvectors for 0 are vectors orthogonal to $(1,2,-4)$ ．The eigenvector for 1 is $(1,2,-4)$ ．
（d）If you solve $\frac{d u}{d t}=-P u$（notice minus sign）starting from $u(0)$ ，the solution $u(t)$ approaches a steady state as $t \rightarrow \infty$ ．Describe that limit vector $u(\infty)$ ？

Solution：The solution $u(t)$ to the differential equation has the form $u(t)=v_{1} e^{-t}+v_{2}$ where v_{1} is in W and v_{2} is in the orthogonal complement of W ．Then $u(\infty)=v_{2}$ ，which is the projection of $u(0)$ onto the orthogonal complement of W ． That is，$u(\infty)=u(0)-P(u(0))$ ．

5．（10 points）Let n denote a positive integer，V denote an n－dimensional vector space，and T denote a linear operator on V ． Suppose $v \in V$ is a nonzero vector such that $T^{k} v=0$ for some positive integer k ．Show that $T^{n} v=0$ ．

Solution：Suppose k is the smallest positive integer such that $T^{k} v=0$ ．The vectors $v, T v, T^{2} v, \ldots, T^{k-1} v$ are linearly indepen－ dent so $k \leq n$ ：
Suppose $c_{0} v+c_{1} T v+c_{2} T^{2} v+\cdots+c_{k-1} T^{k-1} v=0$ ．Applying T^{k-1} to both sides we get $c_{0} T^{k-1} v=0$ and so $c_{0}=0$ ．Now applying T^{k-2} to both sides we get $c_{1} T^{k-1} v=0$ and so $c_{1}=0$ ．Continuing in this fashion，we see that $c_{j}=0$ for all j ．

Part II．ADVANCED CALCULUS

6．（10 points）Let $x_{1}=\frac{\pi}{2}$ and suppose that x_{n} are defined inductively for $n=2,3, \ldots$ by $\cos \left(x_{n+1}\right)=\frac{\sin \left(x_{n}\right)}{x_{n}}, 0<x_{n+1}<\frac{\pi}{2}$ ，for $n=1,2, \ldots$ ．
（a）Prove that $x_{n+1}<x_{n}$ for $n=1,2, \ldots$ ．Hint：You may find $\cos (x)=\frac{d}{d x} \sin (x)$ and the Mean Value Theorem useful．
Solution：By the Mean Value Theorem，there exists a $0<c<x_{n}$ such that $\sin x_{n}=\sin x_{n}-\sin 0=\cos c\left(x_{n}-0\right)=\cos c x_{n}$ ． This implies that $x_{n+1}=c<x_{n}$ ．
（b）Show that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent．
Solution：Since the set $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is nonempty and bounded from below by $0, l=\inf \left\{x_{n} \mid n \in \mathbb{N}\right\}$ exists．The definition of l implies that for each $\varepsilon>0$ there exists an x_{k} for some $k \in \mathbb{N}$ such that $l+\varepsilon>x_{k}$ ．The result of part（a）says that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is decreasing which implies that $l+\varepsilon>x_{k} \geq x_{n}>0$ for all $n \geq k$ ．Therefore，we get $\left|x_{n}-l\right|<\varepsilon$ for all $n \geq k$ which means that $\lim _{n \rightarrow \infty} x_{n}=l$ ．
（c）Find explicitly the limit x of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ ．
Solution：Let $f(x)=x \cos x-\sin x$ for $x \in\left[0, \frac{\pi}{2}\right]$ ．To find all possible limits is equivalent to find zeros of f over $\left[0, \frac{\pi}{2}\right]$ ． Note that $f(0)=0$ and $f^{\prime}(x)=-x \sin x<0$ for all $x \in\left(0, \frac{\pi}{2}\right]$ ，we can conclude that $x=0$ is the only zero of f ．Hence， $\lim _{n \rightarrow \infty} x_{n}=0$ ．

7．（a）（5 points）State what it means for a sequence $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ of real valued functions on a set $X \subset \mathbb{R}^{p}$ to converge uniformly to a function f on X ．
Solution：$\left\{f_{n}\right\}_{n=1}^{\infty}$ is said to converge uniformly on X to f if for each $\varepsilon>0$ there exists a $K(\varepsilon) \in \mathbb{N}$ such that for all $n \geq K(\varepsilon)$ and $x \in X$ then $\left|f_{n}(x)-f(x)\right|<\varepsilon$ ．
（b）（5 points）Let $F:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function on the unit square．Let $f_{n}(t)=F\left(\frac{1}{n}, t\right)$ and $f(t)=F(0, t)$ ． Use the definition in part (a) to show that $\left\{f_{n}(x)\right\}_{n=1}^{\infty}$ converges uniformly to f on the interval $[0,1]$ ．
Solution：Since F is continuous on $[0,1] \times[0,1], F$ is uniformly continuous there．This implies that for any $\varepsilon>0$ and any $t \in[0,1]$ ，there exists a $\delta=\delta(\varepsilon)>0$ such that if $|x-0|<\delta$ then $|F(x, t)-F(0, t)|<\varepsilon$ ．Letting $K(\varepsilon)=\left[\frac{1}{\delta}\right]+1$ ， where $\left[\frac{1}{\delta}\right]$ is defined to be the greatest integer less than or equal to $\frac{1}{\delta}$ ，we note that $n \geq K(\varepsilon)>\frac{1}{\delta}$ implies that $\frac{1}{n}<\delta$ ． Thus，$\left|f_{n}(t)-f(t)\right|=\left|F\left(\frac{1}{n}, t\right)-F(0, t)\right|<\varepsilon$ for all $n \geq K(\varepsilon)$ ．Thus $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to f on $[0,1]$

8．（10 points）For each integer $k \geq 1$ ，let $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable satisfying $\left|f_{k}^{\prime}(x)\right| \leq 1$ ，for all $x \in \mathbb{R}$ ，and $f_{k}(0)=0$ ．
（a）For each $x \in \mathbb{R}$ ，prove that the set $\left\{f_{k}(x)\right\}_{k=1}^{\infty}$ is bounded．
Solution：For each $x \in \mathbb{R}$ ，since $\left|f_{k}(x)\right|=\left|f_{k}(x)-f_{k}(0)\right| \leq\left|f_{k}^{\prime}\left(c_{k}\right)(x-0)\right| \leq|x|$ ，where c_{k} lies between x and 0 ，the set $\left\{f_{k}(x)\right\}_{k=1}^{\infty}$ is bounded．
（b）Use Cantor＇s diagonal method to show that there is an increasing sequence $n_{1}<n_{2}<n_{3}<\cdots$ of positive integers such that，for every $x \in \mathbb{Q}$ ，we have $\left\{f_{n_{k}}(x)\right\}$ is a convergent sequence of real numbers．

Solution：Let $\mathbb{Q}=\left\{x_{1}, x_{2}, \cdots\right\}$ ．Since $\left\{f_{k}\left(x_{1}\right)\right\}$ is bounded，we can extract a convergent subsequence，denoted $\left\{f_{k}^{1}\left(x_{1}\right)\right\}$ ， out of $\left\{f_{k}\left(x_{1}\right)\right\}$ ．Next，the boundedness of $\left\{f_{k}^{1}\left(x_{2}\right)\right\}$ implies that we can extract a convergent subsequence，denoted $\left\{f_{k}^{2}\left(x_{2}\right)\right\}$ ，out of $\left\{f_{k}^{1}\left(x_{2}\right)\right\}$ ．Continuing this way，the boundedness of $\left\{f_{k}^{j}\left(x_{j+1}\right)\right\}$ implies that we can extract a convergent subsequence $\left\{f_{k}^{j+1}\left(x_{j+1}\right)\right\}$ ，out of $\left\{f_{k}^{j}\left(x_{j+1}\right)\right\}$ for each $j \geq 1$ ．Let $f_{n_{k}}=f_{k}^{k}$ for each $k \geq 1$ ．Then $\left\{f_{n_{k}}\right\}$ is a subsequence of $\left\{f_{n}\right\}$ and $\left\{f_{n_{k}}\right\}$ converges at each $x_{j} \in \mathbb{Q}$ ．

9．（10 points）A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be convex if for all $x, y \in \mathbb{R}, \lambda \in[0,1], f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$ ． Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex and that $f^{\prime \prime}(x)$ exists for all $x \in \mathbb{R}$ ．
（a）For any $x<y$ and $0<h<y-x$ ，prove that

$$
f(x+h) \leq \frac{y-x-h}{y-x} \cdot f(x)+\frac{h}{y-x} \cdot f(y), \quad \text { and } \quad f(y-h) \leq \frac{h}{y-x} \cdot f(x)+\frac{y-x-h}{y-x} \cdot f(y) .
$$

Solution：Setting $x+h=\lambda x+(1-\lambda) y$ ，we get $\lambda=\frac{y-x-h}{y-x}$ and $1-\lambda=\frac{h}{y-x}$ ．Thus

$$
f(x+h)=f\left(\frac{y-x-h}{y-x} x+\frac{h}{y-x} y\right) \leq \frac{y-x-h}{y-x} f(x)+\frac{h}{y-x} f(y) .
$$

Setting $y-h=\beta x+(1-\beta) y$ ，we get $\beta=\frac{h}{y-x}$ and $1-\beta=\frac{y-x-h}{y-x}$ ．Thus

$$
f(y-h)=f\left(\frac{h}{y-x} x+\frac{y-x-h}{y-x} y\right) \leq \frac{h}{y-x} f(x)+\frac{y-x-h}{y-x} f(y) .
$$

（b）Prove that $f^{\prime}(x) \leq f^{\prime}(y)$ whenever $x \leq y$ ．
Solution：Since

$$
f^{\prime}(x)-f^{\prime}(y)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}-\frac{f(y-h)-f(y)}{-h}=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)+f(y-h)-f(x)-f(y)}{h} \leq \lim _{h \rightarrow 0^{+}} \frac{f(x)+f(y)-f(x)-f(y)}{h}=0,
$$

where we have used the result of part (a) in the last inequality．We have shown that $f^{\prime}(x) \leq f^{\prime}(y)$ whenever $x \leq y$ ．
（c）Prove that $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$ ．
Solution：The result of part (b) implies that $f^{\prime \prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \geq 0$ ，we have $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$ ．
10．（10 points）Let $g: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ belong to class $C^{1}\left(\mathbb{R}^{p}\right)$ ，i．e．$D g(x)$ exists for all $x \in \mathbb{R}^{p}$ and the mapping $x \rightarrow D g(x)$ is continuous． Assume that there is a constant a such that $\|D g(x)\| \leq a<1$ for each $x \in \mathbb{R}^{p}$ ．
（a）Show that the function $f(x)=x+g(x)$ for $x \in \mathbb{R}^{p}$ satisfies $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)-\left(x_{1}-x_{2}\right)\right\| \leq a\left\|x_{1}-x_{2}\right\|$ for all $x_{1}, x_{2} \in \mathbb{R}^{p}$ ．
Solution：The Mean Value Theorem implies that there exists a $z=\lambda x_{1}+(1-\lambda) x_{2} \in \mathbb{R}^{p}$ for some $\lambda \in[0,1]$ such that

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)-\left(x_{1}-x_{2}\right)\right\|=\left\|D g(z) \cdot\left(x_{1}-x_{2}\right)\right\| \leq a\left\|x_{1}-x_{2}\right\| .
$$

（b）Show that f in part (a) is a bijection of \mathbb{R}^{p} into \mathbb{R}^{p} ．
Solution：Since $D f=I+D g$ and the eigenvalues of $D g$ are bounded by $a<1, D f$ is invertible everywhere．The Inverse Function Theorem implies that f is a local bijection．Since the result of part（a）says that f is a global one－to－one function of \mathbb{R}^{p} into \mathbb{R}^{p}, f is a bijection of \mathbb{R}^{p} into \mathbb{R}^{p} ．

