91 academic year

Part I.

- 1.
- (i) Let $a = 0.9999... = 0.\overline{9}$ and b = 1. Is a < b? Or is a = b? Explain your answer.
- (ii) Let $f:\mathbb{R}^2\to\mathbb{R}$ be defined by f(x,y)=xy. Show that f is a continuous function by using the ϵ - δ language. (10%)
- 2.
- (i) Let $f: [0, \infty) \to \mathbb{R}$ be a bounded continuous function that is improper Riemann integrable on the interval $[0,\infty)$. Is $\lim_{x\to\infty} f(x) = 0$? Why or why not?
- (ii) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Is f(K) closed when K is a closed subset of \mathbb{R} ? Is f(M) bounded and closed when M is a bounded and closed subset of \mathbb{R} ? Why or why not? (10%)

3.

$$f(x) = \begin{cases} x + 2x^2 \sin(1/x), & \text{if } x \neq 0; \\ 0, & \text{if } x = 0. \end{cases}$$

Show that $f'(0) \neq 0$ but that f is not locally invertible near 0. Why does this not contradict the inverse function theorem? (10%)

- 4. Let a_k be a sequence of real numbers. Suppose that the series $\sum_{k=0}^{\infty} a_k$ converges. (i) Does the power series $\sum_{k=0}^{\infty} a_k x^k$ converge uniformly on the interval [0, 1]?
 - Why or why not? (ii) Is $\lim_{x\to 1^-} \sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} a_k$? Why or why not? (10%)
- 5. Define $\rho: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by $\rho((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\}.$
 - (i) Check that (\mathbb{R}^2, ρ) is a metric space.
 - (ii) Let d be the usual metric of \mathbb{R}^2 i.e., $d((x_1, y_1), (x_2, y_2)) = ((x_1 x_2)^2 + (y_1 y_2)^2)$ $(y_2)^2)^{1/2}$. Is an open set in (\mathbb{R}^2, d) also an open set in (\mathbb{R}^2, ρ) ? Why or why not? (10%)

Part II.

- 6. Does there exist 3×3 matrices A and B satisfying AB BA = I (I is the identity matrix)? Why? (8%)
- 7. Give an example of two 3×3 matrices which are similar, but not unitarily equivalent, and explain your answer. (8%)
- 8. Let V be a vector space and $T: V \to V$ be linear. Show that if $T^2 = T$, then $V = \ker(T) \oplus \operatorname{ran}(T)$, the direct sum of kernel and range of T. (8%)
- 9. Suppose A, B and C are 3×3 matrices. Prove that

$$\det\left(\begin{bmatrix} A & B\\ 0 & C \end{bmatrix}\right) = \det(A) \det(C).$$
(8%)

10. Let (V, <, >) be a finite-dimensional inner product space over $\mathbb C$ and

 $F: V \to \mathbb{C}$ be linear. Show that there exists an unique $y \in V$ such that $F(x) = \langle x, y \rangle$ for all $x \in V$. (8%)

11. Evaluate
$$A^{100}$$
, where $A = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix}$. (10%)