91 academic year

Part I.

1.

(i) Let $a=0.9999 \ldots=0 . \overline{9}$ and $b=1$. Is $a<b$? Or is $a=b$? Explain your answer.
(ii) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x y$. Show that f is a continuous function by using the $\epsilon-\delta$ language.
2.
(i) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a bounded continuous function that is improper Riemann integrable on the interval $[0, \infty)$. Is $\lim _{x \rightarrow \infty} f(x)=0$? Why or why not?
(ii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Is $f(K)$ closed when K is a closed subset of \mathbb{R} ? Is $f(M)$ bounded and closed when M is a bounded and closed subset of \mathbb{R} ? Why or why not?
3.

$$
f(x)= \begin{cases}x+2 x^{2} \sin (1 / x), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Show that $f^{\prime}(0) \neq 0$ but that f is not locally invertible near 0 . Why does this not contradict the inverse function theorem?
4. Let a_{k} be a sequence of real numbers. Suppose that the series $\sum_{k=0}^{\infty} a_{k}$ converges.
(i) Does the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ converge uniformly on the interval $[0,1]$? Why or why not?
(ii) Is $\lim _{x \rightarrow 1^{-}} \sum_{k=0}^{\infty} a_{k} x^{k}=\sum_{k=0}^{\infty} a_{k}$? Why or why not?
5. Define $\rho: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $\rho\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\max \left\{\left|x_{1}-x_{2}\right|,\left|y_{1}-y_{2}\right|\right\}$.
(i) Check that $\left(\mathbb{R}^{2}, \rho\right)$ is a metric space.
(ii) Let d be the usual metric of \mathbb{R}^{2} i.e., $d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-\right.\right.$ $\left.\left.y_{2}\right)^{2}\right)^{1 / 2}$. Is an open set in $\left(\mathbb{R}^{2}, d\right)$ also an open set in $\left(\mathbb{R}^{2}, \rho\right)$? Why or why not?

Part II.

6. Does there exist 3×3 matrices A and B satisfying $A B-B A=I$ (I is the identity matrix)? Why?
7. Give an example of two 3×3 matrices which are similar, but not unitarily equivalent, and explain your answer.
8. Let V be a vector space and $T: V \rightarrow V$ be linear. Show that if $T^{2}=T$, then $V=\operatorname{ker}(T) \oplus \operatorname{ran}(T)$, the direct sum of kernel and range of T.
9. Suppose A, B and C are 3×3 matrices. Prove that

$$
\operatorname{det}\left(\left[\begin{array}{cc}
A & B \\
0 & C
\end{array}\right]\right)=\operatorname{det}(A) \operatorname{det}(C)
$$

10. Let $(V,<,>)$ be a finite-dimensional inner product space over \mathbb{C} and
$F: V \rightarrow \mathbb{C}$ be linear. Show that there exists an unique $y \in V$ such that $F(x)=\langle x, y\rangle$ for all $x \in V$.
11. Evaluate A^{100}, where $A=\left[\begin{array}{ccc}-1 & -1 & -1 \\ 1 & 1 & 0 \\ -1 & -1 & 0\end{array}\right]$.
