90 academic year

Part I.

(1) Evaluate the following integrals
(a) $\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x . \quad$ (Hint: $\left.\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}\right)$.
(b) $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x$.
(2) For sequence $\left\{a_{n}\right\}, a_{1} \leq a_{2} \leq \cdots \leq M$ for some $M \in \mathbb{R}$
(a) Prove $\lim _{n \rightarrow \infty} a_{n}=\sup \left\{a_{n}\right\}$, where $\sup \left\{a_{n}\right\}$ denotes the supremum of $\left\{a_{n}\right\}$.
(b) Use (a) to prove $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ exists.
(c) Prove the $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$ exists.
(3) Let $\left\{f_{n}\right\}$ be a sequence of continuous functions on $D \subseteq \mathbb{R}^{p}$ to \mathbb{R}^{q} such that $\left\{f_{n}\right\}$ converges to f on D, and let $\left\{x_{n}\right\}$ be a sequence in D which converges to $x \in D$. Prove or disprove $\left\{f_{n}\left(x_{n}\right)\right\}$ converges to $f(x)$.
(4) Prove $C=\left\{x: x=\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}, a_{n}=0\right.$ or 2$\}$ is uncountable.

Part II.

(5)
(a) Give an example of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ without any eigenvalues.
(b) Give an example of a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ without any eigenvalues.
(6) Find the characteristic polynomial, minimal polynomial, eigenvalues and eigenvectors of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T(x, y, z)=(2 x+y, y-z, 2 y+4 z)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$. Is it possible to diagonalize T ? Why?
(7) Let U_{1} and U_{2} be vector subspaces of a finite dimensional vector space V. Show that there is an isomorphism $T: V \rightarrow V$ such that T maps U_{1} isomorphically onto U_{2} if and only if $\operatorname{dim} U_{1}=\operatorname{dim} U_{2}$.
(8) Let V be a finite dimensional vector space over \mathbb{R} and $\langle\cdot, \cdot\rangle$ a symmetric bilinear form on V with $\langle x, x\rangle \geq 0$ for all $x \in V$. Let $\varphi: V \rightarrow V$ be a linear transformation. Prove that the following statements are equivalent:
(a) For all $x, y \in V,\langle\varphi(x), y\rangle=-\langle x, \varphi(y)\rangle$.
(b) The matrix A of φ relative to some orthogonal basis of V is anti-symmetric (i.e., $A^{T}=-A$).
(9) Let V be an n-dimensional vector space over some field F, and let $T: V \rightarrow V$ be a linear transformation. Let $v \in V$ be such that $\left\{v, T(v), T^{2}(v), \cdots\right\}$ spans V. Suppose that $\operatorname{dim} V=n$. Show that the vectors, $v, T(v), T^{2}(v), \ldots, T^{n-1}(v)$ form a basis of V.
(10) Let V be a vector space and $n \in \mathbb{N}$. Suppose that $f: V \rightarrow V$ is a linear transformation with $f^{n}(v)=0$ for all $v \in V$. Let $g: V \rightarrow V$ be an arbitrary linear transformation and set $T=f \circ g=g \circ f$. Show that there is some $m \in \mathbb{N}$ such that $T^{m}(v)=0$ for all $v \in V$.

