90 academic year

Part I.

- (1) Evaluate the following integrals (15%) (a) $\int_0^\infty (\frac{\sin x}{x})^2 dx$. (Hint: $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$).
 - (b) $\int_0^\infty \frac{\cos x}{1+x^2} dx.$
- (2) For sequence $\{a_n\}, a_1 \le a_2 \le \dots \le M$ for some $M \in \mathbb{R}$ (15%)
 - (a) Prove $\lim_{n \to \infty} a_n = \sup\{a_n\}$, where $\sup\{a_n\}$ denotes the supremum of $\{a_n\}$.
 - (b) Use (a) to prove $\lim_{n \to \infty} (1 + \frac{1}{n})^n$ exists.
 - (c) Prove the $\lim_{x \to \infty} (1 + \frac{1}{x})^x$ exists.
- (3) Let $\{f_n\}$ be a sequence of continuous functions on $D \subseteq \mathbb{R}^p$ to \mathbb{R}^q such that $\{f_n\}$ converges to f on D, and let $\{x_n\}$ be a sequence in D which converges to $x \in D$. Prove or disprove $\{f_n(x_n)\}$ converges to f(x). (10%)

(4) Prove
$$C = \{x : x = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, a_n = 0 \text{ or } 2\}$$
 is uncountable. (10%)
Part II.

- (5)
- (a) Give an example of a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ without any eigenvalues. (3%)
- (b) Give an example of a linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ without any eigenvalues. (3%)
- (6) Find the characteristic polynomial, minimal polynomial, eigenvalues and eigenvectors of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(x, y, z) = (2x + y, y - z, 2y + 4z)$$

for all $(x, y, z) \in \mathbb{R}^3$. Is it possible to diagonalize T? Why? (6%)

- (7) Let U_1 and U_2 be vector subspaces of a finite dimensional vector space V. Show that there is an isomorphism $T: V \to V$ such that T maps U_1 isomorphically onto U_2 if and only if dim $U_1 = \dim U_2$. (8%)
- (8) Let V be a finite dimensional vector space over \mathbb{R} and $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on V with $\langle x, x \rangle \geq 0$ for all $x \in V$. Let $\varphi: V \to V$ be a linear transformation. Prove that the following statements are equivalent:
 - (a) For all $x, y \in V$, $\langle \varphi(x), y \rangle = -\langle x, \varphi(y) \rangle$.
 - (b) The matrix A of φ relative to some orthogonal basis of V is anti-symmetric (i.e., $A^T = -A$). (10%)

- (9) Let V be an n-dimensional vector space over some field F, and let $T: V \to V$ be a linear transformation. Let $v \in V$ be such that $\{v, T(v), T^2(v), \cdots\}$ spans V. Suppose that dim V = n. Show that the vectors, $v, T(v), T^2(v), \ldots, T^{n-1}(v)$ form a basis of V. (10%)
- (10) Let V be a vector space and $n \in \mathbb{N}$. Suppose that $f: V \to V$ is a linear transformation with $f^n(v) = 0$ for all $v \in V$. Let $g: V \to V$ be an arbitrary linear transformation and set $T = f \circ g = g \circ f$. Show that there is some $m \in \mathbb{N}$ such that $T^m(v) = 0$ for all $v \in V$. (10%)