89 academic year

Show all works

1. Let $U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}-x_{3}+3 x_{4}=0\right\}$ and V be the vector subspace generated by the vector $(0,1,0,0)$ and U.
(a) Find an orthonormal basis of U.
(b) Find an orthonormal basis of V.
2. Let $x \in \mathbb{R}$, discuss the rank of the matrix $\left(\begin{array}{cccc}x & 0 & 0 & 1 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 1 & 0 & 1 & x\end{array}\right)$.
3. Let $A=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$.
(a) Find the characteristic polynomial of A.
(b) Find the minimal polynomial of A.
(c) If $f(X)=X^{5}-7 X^{4}+9 X^{3}+9 X^{2}-7 X+8$, find $f(A)$.
(d) Find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
4. Define $f(x)=\left(\int_{0}^{x} e^{-t^{2}} d t\right)^{2}$ and $g(x)=\int_{0}^{1} \frac{e^{-x^{2}\left(t^{2}+1\right)}}{t^{2}+1} d t$.
(a) Show that $f^{\prime}(x)+g^{\prime}(x)=0$, for all x and deduce that $f(x)+g(x)=\frac{\pi}{4}$.
(b) Use (a) to prove that $\int_{-\infty}^{\infty} e^{-t^{2}} d t=\sqrt{\pi}$.
5. Let f be a positive continuous function in $[a, b]$. Let M be the maximal value of f on $[a, b]$. Show that $\lim _{n \rightarrow \infty}\left(\int_{a}^{b} f(x)^{n} d x\right)^{1 / n}=M$.
6. Suppose that $a_{n}>0, s_{n}=a_{1}+a_{2}+\cdots+a_{n}$, and $\sum a_{n}$ diverges.
(a) Prove that $\sum \frac{a_{n}}{1+a_{n}}$ diverges.
(b) What can we say about $\sum \frac{a_{n}}{1+n a_{n}}$?
7. Determine all real values of x for which the following series converges:

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) \frac{\sin n x}{n}
$$

8. Let $\left(R^{2}, \rho\right)$ be a metric space where $R^{2}=\left\{x=\left(x_{1}, x_{2}\right) \mid x_{1}, x_{2} \in R\right\}$ and $\rho(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$.
Show that the set $S=\left\{x \in R^{2} \mid \sqrt{x_{1}^{2}+x_{2}^{2}}<1\right\}$ is an open and connected set.
