88 academic year

Show all works

1.

(a) $[10 \%]$ Show that the integral $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
(b) $[5 \%]$ Evaluate the integral $\int_{0}^{\infty} \frac{\sin x \cos x y}{x} d x$.
2. [10\%] Let (x, y, z) and (ρ, θ, ϕ) be the rectangular coordinates and the spherical coordinates, respectively, for \mathbf{R}^{3}. Compute $\frac{\partial(x, y, z)}{\partial(\rho, \theta, \phi)}$.
3. [15\%] Explain the identity

$$
\frac{1}{1+x^{2}}=\Sigma_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

why the left side is defined on \mathbf{R}^{1} while the right side is only defined on the interval $-1<x<1$?
4. [15\%] Suppose that the series $\Sigma_{n=1}^{\infty} a_{n}$ converges and for each $a_{n} \geq 0$. Discuss the convergence of the series

$$
\sum_{n=1}^{\infty} \sqrt{a_{n}} n^{-p}, \quad p \in \mathbf{R}
$$

on which interval the series converges and on which interval the series may or may not diverge. If it is in the latter case, please give examples.
5. Let $A=\left(\begin{array}{cccc}3 & 0 & 0 & 0 \\ a & 3 & 0 & 0 \\ b & c & -2 & 0 \\ d & e & f & 5\end{array}\right)$, where $a, b, c, d, e, f \in \mathbf{C}$.
(a) [4\%] Find all possible characteristic and minimal polynomials for A.
(b) $[8 \%]$ Find all possible Jordan forms of A.
(c) $[3 \%]$ Find all possible diagonal matrix that are similar to A.
6. Let $A \in M(n, \mathbf{C})$, set of all $n \times n$ matrices with complex entries, such that $A^{*}=$ $-A$, and let $B=e^{A}$. (Recall that the joint matrix, A^{*}, of the matrix A is given by $(A x, y)=\left(x, A^{*} y\right) ; B$ is unitary if $B B^{*}=I$.) Show that
(a) [5\%] $\operatorname{det} B=e^{\operatorname{tr} A}$;
(b) $[5 \%] B^{*}=e^{-A}$;
(c) $[5 \%] B$ is unitary.
7. [15\%] Evaluate the area enclosed by the curve $13 x^{2}+10 x y+13 y^{2}-72=0$. (Hint: use Green's Theorem.)

