87 academic year

1. Let
$$u = (u_1, u_2, u_3) \in \mathbb{R}^3$$
, u^t be the transpose of $u, A = (u^t)u$ and $\lambda = ||u||^2$.
Prove that A is similar to $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. (10%)

2. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be linear, rank T = 2 and A be the representation matrix of T w.r.t.

the standard basis of \mathbb{R}^3 .

- (i) Prove that ran $T^* = (\ker T)^{\perp}$. (7%)
- (ii) List all the possible canonical forms of A. (7%)
- (iii) Find the sufficient and necessary conditions on T so that A is unitarily similar to a diagonal matrix. Justify your answer ! (10%)
- 3. Let C[a, b] be the collection of all real-valued functions which are continuous on [a, b].

Define $\langle f,g \rangle = \int_a^b f(x)g(x)dx$ for $f,g \in C[a,b]$.

- (i) Prove that $\langle \cdot, \cdot \rangle$ is an inner product on C[a, b]. (7%)
- (ii) Let $||f|| = (\langle f, f \rangle)^{\frac{1}{2}}$. Prove or disprove that if $f_n \in C[a, b]$ for n = 1, 2, 3, ...and $||f_n - f|| \to 0$, then $f \in C[a, b]$. (7%)
- 4. Let $I \subseteq \mathbb{R}$ and $f_n \to f$ uniformly on I. Prove or disprove the following statements:
 - (i) if each f_n is bounded on I, then f is bounded on I. (7%)
 - (ii) if $g_n \to g$ uniformly on I, then $f_n g_n \to fg$ uniformly on I. (7%)
- 5. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable and p > 0. Show that $f(\lambda x) = \lambda^p f(x)$ for every real λ and every x in \mathbb{R}^n , if and only if $x \cdot \nabla f(x) = pf(x)$ for all x in \mathbb{R}^n . (10%)
- 6. Let $f(x,y) = \int_0^\infty \frac{1}{(1+x^2t^2)(1+y^2t^2)} dt$ if $(x,y) \neq (0,0)$. (i) Show that $f(x,y) = \frac{\pi}{2} \cdot \frac{1}{x+y}$.
 (8%)
 - (ii) Evaluate the $\int_0^1 dy \int_0^1 f(x, y) dx$ to derive the formula:

$$\int_0^\infty \frac{(\tan^{-1} x)^2}{x^2} dx = \pi \log 2.$$
(10%)

7. Suppose $S = \{(x, y, z) | x^2 + y^2 + z^2 = 1\}$, p = (1, 0, 0) and $\int_S d\sigma$ means the surface integral on S. Prove

$$\frac{1}{2\pi^2} \int_S (p \cdot u) u d\sigma(u) = p. \tag{10\%}$$