87 academic year

1. Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, u^{t}$ be the transpose of $u, A=\left(u^{t}\right) u$ and $\lambda=\|u\|^{2}$.

Prove that A is similar to $\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be linear, rank $T=2$ and A be the representation matrix of T w.r.t.
the standard basis of \mathbb{R}^{3}.
(i) Prove that ran $T^{*}=(\operatorname{ker} T)^{\perp}$.
(ii) List all the possible canonical forms of A.
(iii) Find the sufficient and necessary conditions on T so that A is unitarily similar to
a diagonal matrix. Justify your answer !
3. Let $C[a, b]$ be the collection of all real-valued functions which are continuous on $[a, b]$.
Define $\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x$ for $f, g \in C[a, b]$.
(i) Prove that $\langle\cdot, \cdot\rangle$ is an inner product on $C[a, b]$.
(ii) Let $\|f\|=(\langle f, f\rangle)^{\frac{1}{2}}$. Prove or disprove that if $f_{n} \in C[a, b]$ for $n=1,2,3, \ldots$ and $\left\|f_{n}-f\right\| \rightarrow 0$, then $f \in C[a, b]$.
4. Let $I \subseteq \mathbb{R}$ and $f_{n} \rightarrow f$ uniformly on I.

Prove or disprove the following statements:
(i) if each f_{n} is bounded on I, then f is bounded on I.
(ii) if $g_{n} \rightarrow g$ uniformly on I, then $f_{n} g_{n} \rightarrow f g$ uniformly on I.
5. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable and $p>0$. Show that $f(\lambda x)=\lambda^{p} f(x)$ for every real λ and every x in \mathbb{R}^{n}, if and only if $x \cdot \nabla f(x)=p f(x)$ for all x in \mathbb{R}^{n}.
6. Let $f(x, y)=\int_{0}^{\infty} \frac{1}{\left(1+x^{2} t^{2}\right)\left(1+y^{2} t^{2}\right)} d t$ if $(x, y) \neq(0,0)$.
(i) Show that $f(x, y)=\frac{\pi}{2} \cdot \frac{1}{x+y}$.
(ii) Evaluate the $\int_{0}^{1} d y \int_{0}^{1} f(x, y) d x$ to derive the formula:

$$
\int_{0}^{\infty} \frac{\left(\tan ^{-1} x\right)^{2}}{x^{2}} d x=\pi \log 2
$$

7. Suppose $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}, p=(1,0,0)$ and $\int_{S} d \sigma$ means the surface integral on S. Prove

$$
\frac{1}{2 \pi^{2}} \int_{S}(p \cdot u) u d \sigma(u)=p
$$

