國立成功大學 103 學年度「碩士班」研究生甄試入學考試 【基礎數學】: Part I. 高等微積分

advanced calculus

1. Prove that $\lim_{x\to\infty} (x^5 - 3x^4 - x^2 + 1)^{-1} = 0.$ (20 points)

2. Define a function f by

$$f(x) = \begin{cases} x \cdot \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Prove or disprove that f is uniformly continuous on \mathbb{R} . (20 points)

3. Let f be a smooth function on (-1,1) and $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-1,1)$. Let $\{x_m\}$ be a sequence with $x_m \neq 0$ for all $m \in \mathbb{N}$. Assume that $\{x_m\}$ converges to zero with $f(x_m) = 0$. Show that f = 0 on (-1,1). (20 points)

4. Let f be continuous on [0, 1] and suppose that f(0) = 0. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x^n) = 0.$$

(20 points)

5. Evaluate the integral $\int_0^\infty e^{-x^2} dx$. (20 points)

國立成功大學 103 學年度「碩士班」研究生甄試入學考試 【基礎數學】: Part II. 線性代數

Notation

- n: a positive integer
- $M_{n \times n}(F)$: the set of all $n \times n$ matrices over the field F
- \mathbb{R} : the field of all real numbers
- \mathbb{C} : the field of all complex numbers
- A^* : the conjugate transpose of the matrix A
- 1. (12%) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the \mathbb{R} -linear map defined by

$$T(a, b, c) = (a - 3b - 2c, a + b, 3a + 5b + c).$$

Find the rank of T, and find a basis for the null space of T.

2. (12%) Suppose W_1 and W_2 are the following subspaces of the real vector space $M_{3\times 3}(\mathbb{R})$:

$$W_1 = \left\{ \begin{pmatrix} a & 2a & b \\ b & c & 0 \\ 0 & 0 & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}, \quad W_2 = \left\{ \begin{pmatrix} a & b & 2a \\ b & 2c & d \\ 0 & d & 0 \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}.$$

Find the dimension of the subspace $W_1 + W_2$.

3. Consider the real matrix
$$A = \begin{pmatrix} 12 & -5 & -5 & 3\\ 20 & -8 & -10 & 0\\ 7 & -3 & -2 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- (a) (10%) Find the characteristic polynomial of A.
- (b) (5%) Is A similar to a 4×4 diagonal matrix over \mathbb{R} ? Justify your answer.
- (c) (5%) Is A similar to a 4×4 diagonal matrix over \mathbb{C} ? Justify your answer.
- 4. (12%) Show that if A is a 3×3 real matrix, then A is similar to

1	'λ	0	0)		/0	λ	0)				/0	0	λ
	0	λ	0	,	1	μ	0	,	or	-	1	0	μ
1	0	0	λ		0/	0	ν)				0/	1	ν)

for some $\lambda, \mu, \nu \in \mathbb{R}$.

- 5. (12%) Let A be a 6×6 complex matrix such that $A^3 = 0$. Find all possible Jordan canonical forms of A.
- (12%) Suppose N ∈ M_{n×n}(C) is normal, i.e., N*N = NN*. Show that N is self-adjoint if and only if all eigenvalues of N are real.
- 7. Let $\langle A, B \rangle$ be the trace of AB^* for all $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) (10%) Show that $\langle \cdot, \cdot \rangle$ is an inner product on $M_{n \times n}(\mathbb{C})$.
 - (b) (10%) Let $P \in M_{n \times n}(\mathbb{C})$ be invertible, and let T be the linear operator on $M_{n \times n}(\mathbb{C})$ defined by $T(A) = P^{-1}AP$. Find the adjoint of T with respect to the inner product $\langle \cdot, \cdot \rangle$.