【基礎數學】：Part I．高等微積分

advanced calculus

1．Prove that $\lim _{x \rightarrow \infty}\left(x^{5}-3 x^{4}-x^{2}+1\right)^{-1}=0$ ．（20 points）

2．Define a function f by

$$
f(x)=\left\{\begin{array}{l}
x \cdot \sin (1 / x), \quad x \neq 0 \\
0, \quad x=0
\end{array}\right.
$$

Prove or disprove that f is uniformly continuous on \mathbb{R} ．（20 points）
3．Let f be a smooth function on $(-1,1)$ and $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $x \in(-1,1)$ ．Let $\left\{x_{m}\right\}$ be a sequence with $x_{m} \neq 0$ for all $m \in \mathbb{N}$ ．Assume that $\left\{x_{m}\right\}$ converges to zero with $f\left(x_{m}\right)=0$ ．Show that $f=0$ on $(-1,1)$ ．（20 points）

4．Let f be continuous on $[0,1]$ and suppose that $f(0)=0$ ．Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right)=0
$$

（20 points）
5．Evaluate the integral $\int_{0}^{\infty} e^{-x^{2}} d x$ ．（20 points）

囹立成功大學 103 學年度「碩士班」研究生甄試入學考試

【基礎数學】：Part II．缐性代数

Notation

－n ：a positive integer
－ $\mathrm{M}_{n \times n}(F)$ ：the set of all $n \times n$ matrices over the field F
－ \mathbb{R} ：the field of all real numbers
－ \mathbb{C} ：the field of all complex numbers
－A^{*} ：the conjugate transpose of the matrix A

1．（12\％）Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the \mathbb{R}－linear map defined by

$$
T(a, b, c)=(a-3 b-2 c, a+b, 3 a+5 b+c)
$$

Find the rank of T ，and find a basis for the null space of T ．
2．(12%) Suppose W_{1} and W_{2} are the following subspaces of the real vector space $\mathrm{M}_{3 \times 3}(\mathbb{R})$ ：

$$
W_{1}=\left\{\left(\begin{array}{ccc}
a & 2 a & b \\
b & c & 0 \\
0 & 0 & d
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}, \quad W_{2}=\left\{\left(\begin{array}{ccc}
a & b & 2 a \\
b & 2 c & d \\
0 & d & 0
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

Find the dimension of the subspace $W_{1}+W_{2}$ ．
3．Consider the real matrix $A=\left(\begin{array}{cccc}12 & -5 & -5 & 3 \\ 20 & -8 & -10 & 0 \\ 7 & -3 & -2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ ．
（a）(10%) Find the characteristic polynomial of A ．
（b）(5%) Is A similar to a 4×4 diagonal matrix over \mathbb{R} ？Justify your answer．
（c）(5%) Is A similar to a 4×4 diagonal matrix over \mathbb{C} ？Justify your answer．
4．(12%) Show that if A is a 3×3 real matrix，then A is similar to

$$
\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right), \quad\left(\begin{array}{lll}
0 & \lambda & 0 \\
1 & \mu & 0 \\
0 & 0 & \nu
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ccc}
0 & 0 & \lambda \\
1 & 0 & \mu \\
0 & 1 & \nu
\end{array}\right)
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$ ．
5．(12%) Let A be a 6×6 complex matrix such that $A^{3}=0$ ．Find all possible Jordan canonical forms of A ．

6．（12\％）Suppose $N \in \mathrm{M}_{n \times n}(\mathbb{C})$ is normal，i．e．，$N^{*} N=N N^{*}$ ．Show that N is self－adjoint if and only if all eigenvalues of N are real．

7．Let $\langle A, B\rangle$ be the trace of $A B^{*}$ for all $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$ ．
（a）(10%) Show that $\langle\cdot, \cdot\rangle$ is an inner product on $M_{n \times n}(\mathbb{C})$ ．
（b）(10%) Let $P \in \mathrm{M}_{n \times n}(\mathbb{C})$ be invertible，and let T be the linear operator on $\mathrm{M}_{n \times n}(\mathbb{C})$ defined by $T(A)=P^{-1} A P$ ．Find the adjoint of T with respect to the inner product $\langle\cdot, \cdot\rangle$ ．

