【基礎数學】：Part I．高等微積分
Master Entrance Exam，Advanced Calculus，NCKU Math，Oct．26， 2012 Show all works
1．Prove or disprove the following statements．
（a）If f is continuous at $x=0$ ，then there exists a $\delta>0$ such that f is continuous on $(-\delta, \delta)$ ．
（b）If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R} ，then f^{\prime} is continuous on \mathbb{R} ：
（c）Let $f: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth function．Consider a smooth surface $S=\{(x, y, z)$ ： $f(x, y, z)=k\}$ for some constant k and a curve $\{\alpha(t)=(x(t), y(t), z(t)) ; \alpha(t) \subset S, t \in I\}$ for some． interval I ．Show that ∇f is perpendicular to the surface S ．

2．（a）State the Inverse Function Theorem．（Do not prove it．）
（b）Let $f(x)=\left\{\begin{array}{ll}x+x^{3} \sin \frac{1}{x}, & x \neq 0 . \\ 0, & x=0 .\end{array}\right.$ Using the Inverse Function Theorem to prove that $f(x)$ has an inverse on a small neighborhood containing 0 ．

3．（a）Let $a_{n}>0$ and $\sum_{n} a_{n}$ converge．Do the series $\sum_{n} a_{n}^{2}$ and $\sum_{n} \sqrt{a_{n}}$ converge？or diverge？ Prove it if it is correct．Disprove it if it is wrong by giving examples．
（b）State the definitions of a function being continuous，uniformly continuous，and absolutely continuous．Also gives examples of functions being uniformly continuous but not absolutely continuous， and continuous but not uniformly continuous．
（c）Give examples for function being Riemann integrable but not Lebesgue intetgrable and being Lebesgue intetgrable but not Riemann integrable．

4．Let ϕ be continuous and bounded．Let $u_{\epsilon}(\mathbf{x}, t)=\frac{1}{(2 \pi t)^{\frac{3}{2}}(\epsilon+i)^{\frac{3}{2}}} \iiint_{\mathbf{R}^{3}} e^{\frac{-\left|x^{\prime}-x^{\prime}\right|^{2}}{2(t+i) t}} \phi\left(\mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime}$ with $\epsilon, t>0$ ，where $i=\sqrt{-1}$ ．State the theorems you use in the following problems．
（a）Use the change of variables $\mathbf{x}-\mathbf{x}^{\prime}=\left(2\left(\epsilon^{2}+1\right) t\right)^{\frac{1}{2}} \mathbf{y}$ to show that
［10\％］

$$
\lim _{t \rightarrow 0^{+}} u_{\epsilon}(\mathrm{x}, t)=\frac{(\epsilon-i)^{\frac{3}{2}}}{\pi^{\frac{3}{2}}} \iiint_{\mathbf{R}^{3}} e^{-(\epsilon-i)|y|^{2}} d \mathbf{y} \phi(\mathbf{x}) .
$$

（b）Use the spherical coordinates and integration by parts to show that
［10\％］

$$
\lim _{t \rightarrow 0^{+}} u_{\epsilon}(\mathbf{x}, t)=\frac{2(\epsilon-i)^{\frac{1}{2}}}{\sqrt{\pi}} \int_{0}^{\infty} e^{-(\epsilon-i) r^{2}} d r \phi(\mathbf{x}) .
$$

（c）Use the facts $\int_{0}^{\infty} \cos r^{2} d r=\int_{0}^{\infty} \sin r^{2} d r=\sqrt{\frac{\pi}{8}}, \quad e^{i \theta}=\cos \theta+i \sin \theta$, and $\lim _{\epsilon \rightarrow 0^{+}}(\epsilon-i)^{\frac{1}{2}}=\frac{1-i}{\sqrt{2}}$ to show that $\lim _{\epsilon \rightarrow 0^{+}} \lim _{t \rightarrow 0^{+}} u_{\epsilon}(\mathbf{x}, t)=\phi(\mathbf{x})$ ．
（d）Show that the integral $\int_{0}^{\infty} \cos r^{2} d r$ converges．

【基礎数學】：Part II．缐性代数

Notation

－A^{T} ：the transpose of the matrix A
－I_{n} ：the $n \times n$ identity matrix
－ \mathbb{R} ：the field of real numbers

1．(10%) Compute the dimension of the subspace

$$
\{(a+2 b+3 c-d, a+c+d, a+2 b+3 c-d, 4 a+5 b+9 c-d) \mid a, b, c, d \in \mathbb{R}\}
$$

of \mathbb{R}^{4} ．
2．Let V be the vector space of all polynomials of degree at most 3 with real coefficients． Suppose $T: V \rightarrow V$ is the map defined by

$$
T(p(x))=p(x)+p^{\prime}(x)
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$ ．
（a）（4\％）Show that T is a linear operator on V ．
（b）(8%) Find $[T]_{\beta}$ where $\beta=\left\{1, x, x^{2}, x^{3}\right\}$ ．（Here $[T]_{\beta}$ is the matrix representation of T with respect to the ordered basis β ．）

3．(10%) Let

$$
A=\left(\begin{array}{ccc}
2 / 7 & 3 / 7 & 6 / 7 \\
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6}
\end{array}\right) .
$$

Find suitable $a_{i} \in \mathbb{R}, i=1, \ldots, 6$ ，such that $A^{T} A=A A^{T}=I_{3}$ ．
4．（ 10% ）Show that there are no 5×5 invertible matrices A, B over \mathbb{R} satisfying $A B=-B A$ ．
5．Let A be an $m \times n$ matrix over \mathbb{R} ．
（a）（7\％）Show that $\operatorname{rank}(B A) \leq \operatorname{rank}(A)$ for every $n \times m$ matrix B over \mathbb{R} ．
（b）(7%) Show that $\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}(A)$ ．
6．Consider the following matrix

$$
A=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
4 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right)
$$

（a）（5\％）Find the eigenvalues of A ．
（b）(12%) Find an invertible matrix Q such that $Q^{-1} A Q$ is a diagonal matrix．
（c）（5\％）Find a matrix B such that $B^{3}=A$ ．
7．（a）(10%) Show that if A is a 102×102 matrix over \mathbb{R} such that $A^{102}=102 A$ ，then the matrix $A-I_{102}$ is invertible．
（b） $\mathbf{(1 2 \%)}$ Find a 102×102 matrix B over \mathbb{R} such that $B^{102}+B^{101}+\ldots+B+I_{102}=0$ ． Justify your answer．

