成功大學101學年度「碩士班」研究生甄試入學考試

【基礎數學】：Part I．高等微積分

1．（10）Let f be a real－valued function with $(n+1)$ derivatives on $[a, b]$ ． Assume that $f^{(i)}(a)=f^{(i)}(b)=0, \quad i=1,2, \ldots, n$ ．Show that there exists a $\xi \in(a, b)$ such that $f^{(n+1)}(\xi)=f(\xi)$ ．
2．（10）Denote $\sin _{0} x=x$ ．For $n \geq 1$ ，we define recursively $\sin _{n} x:=$ $\sin \left(\sin _{n-1} x\right)$ ．Show that

$$
\lim _{x \rightarrow 0} \frac{\sin _{n} x}{x}=1, \quad \forall n \in \mathbb{N}
$$

3．（15）Given $0<x_{j}<\pi, j=1,2, \ldots, n$ ．Write $x=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$ ．Prove

$$
\prod_{j=1}^{n} \frac{\sin x_{j}}{x_{j}} \leq\left(\frac{\sin x}{x}\right)^{n}
$$

4．（15）Prove that the sequence $\left\{x_{n}\right\}$ converges to $x \in \mathbb{R}$ if and only if every subsequence of it has a subsequence that converges to x ．

5．（15）For a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ ，prove or disprove the following
（a）（10）If $f(x) \geq 0$ for every rational x ，then $f(x) \geq 0, \forall x \in \mathbb{R}$ ．
（b）（5）If $f(x)>0$ for every rational x ，then $f(x)>0, \forall x \in \mathbb{R}$ ．
6．（10）For what value of $a>1$ is

$$
\int_{a}^{a^{2}} \frac{1}{x} \ln \frac{x-1}{32} d x
$$

minimum ？
7．（10）Compute for $n \in \mathbb{N}$ ，the integral

$$
\int_{-\pi}^{\pi} \frac{\sin n x}{\left(1+2^{x}\right) \sin x} d x
$$

8．（15）Consider the Riemann function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x=0 \text { or if } x \notin \mathbb{Q} \\
\frac{1}{n}, \text { if } x=\frac{m}{n}, m, n \in \mathbb{N},(m, n)=1
\end{array}\right.
$$

Show by the definition of（Riemann）integrability that f is Riemann integrable and $\int_{0}^{1} f(x) d x=0$ ．
（1）（25pts）The set of all polynomials of one variable x with real coefficients is denoted by $\mathbb{R}[x]$ ．Let

$$
V=\{f \in \mathbb{R}[x]: \operatorname{deg}(f) \leq 4, f(-1)=f(1)=0\}
$$

（a，5pts）Prove that V with polynomial addition is a vector space over \mathbb{R} ．
（b，10pts）For $f, g \in V$ ，let

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Prove that $(V,\langle\bullet \bullet\rangle)$ is an inner product space．
（c，10pts）Compute the dimension of V and find an orthonor－ mal basis．
（2）（ 10 pts ）Let A be a 2×2 real matrix such that $A^{T}=-A$ and $\operatorname{det}(A) \neq 0$ ．Let g be a 2×2 real matrix．Prove $g^{T} A g=A$ if and only if $\operatorname{det}(g)=1$ ．
（3）（15pts）A complex matrix A is called unitary if $A^{T} \bar{A}=I$ ．
（a，8pts）Prove that if A is unitary，then A is diagonalizable．
（b， 7 pts ）Prove that if A is unitary，then all its eigenvalues have absolute value 1 ．
（4）（10pts）For A be an $n \times n$ real matrix，denote by $P_{A}(x)$ the characteristic polynomial of A ．Let g be an invertible $n \times n$ real matrix．Prove $P_{g A g^{-1}}(x)=P_{A}(x)$ ．
（5）（20pts）Let A be an 3×3 matrix over \mathbb{R} such that $A^{m}=0$ for some positive integer m ．
（a，10pts）Compute the eigenvalues of A ．You must show work and prove your claim．
（b，10pts）Define $A^{0}=I$ ．Compute the eigenvalues of e^{A} where $e^{A}=\sum_{i=0}^{\infty} \frac{A^{i}}{i!}$ ．You must show work and prove your claim．
（6）（20pts）Let $M_{2}(\mathbb{R})$ be the vector space of 2×2 real matrices and $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ ．Let T be the linear transformation

$$
T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R}), \quad T(B)=A B-B A
$$

Compute the eigenvalues and eigenvectors of T ．

