advanced calculus

1. Let $f(x)=a_{1} \sin x+a_{2} \sin 2 x+\cdots+a_{n} \sin n x$, where a_{1}, \cdots, a_{n} are real numbers and n is a positive integer. Given that $|f(x)| \leq|\sin x|$ for all real x, prove that

$$
\left|a_{1}+2 a_{2}+\cdots+n a_{n}\right| \leq 1 .
$$

(15 points)
2. If $a_{0}, a_{1}, \cdots, a_{n}$ are real numbers satisfying

$$
\frac{a_{0}}{1}+\frac{a_{1}}{2} \cdots+\frac{a_{n}}{n+1}=0,
$$

show that she equation $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0$ has at least one real zero. (15 points)
3. Define a function f by

$$
f(x)=\left\{\begin{array}{l}
x \cdot \sin (1 / x), \quad x \neq 0 \\
0, \quad x=0
\end{array}\right.
$$

Prove or disprove that f is Lipschitz continuous on \mathbb{R}. (15 points)
(A function f is Lipschitz continuous on \mathbb{R} if there is a constant L such that

$$
|f(x)-f(y)| \leq L|x-y| \quad \text { for all } \quad x, y \in \mathbb{R} .)
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be clifferential and $\left|f^{\prime}(x)\right| \leq c<1$ on \mathbb{R}. Assume that $f(0)>0$.

Show that there exists a solution $\tilde{x}>0$ to the cquation $f(\tilde{x})=\tilde{x}$. (15 points)
5. Let $f \in C[0,1]$ and $f(0)=0$. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) d x=0
$$

(20 points)
6. Consider the pair of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}+(z-1)^{2}=4 \\
-x^{2}-y+z^{2}=1
\end{array}\right.
$$

(a) Is there a curve of intersection through $(0,0,-1)$? (10 points)
(b) Is there a curve of intersection through $(\sqrt{3}, 0,2)$? (10 points)

Linear Algebra

Read carefully the definitions and terminology given in the following section before you work on any of the problems.
Work out all of the problems and show details of your works.

Definitions and Terminology. In what follows, we fix F for a field and V for a vector space over F. The field of real numbers is denoted by \mathbb{R} and the field of complex numbers is denoted by \mathbb{C}. The set of all positive integers is denoted by \mathbb{N}. Let $L(V, V)$ be the set of all linear transformations from V to V, and let $M(n, F)$ be the set of all $n \times n$ matrices, where n is a positive integer.

We call a linear transformation $f \in L(V, V)$ nilpotent if there exists some $n \in \mathbb{N}$ such that $f^{n}(v)=0$ for all $v \in V$, and we call f cyclic if there exists some $v \in V$ such that V is spanned by $v, f(v), f^{2}(v), \ldots, f^{n-1}(v)$. A subspace W of V is called cyclic with respect to f if it is spanned by $w_{0}, f\left(w_{0}\right), f^{2}\left(w_{0}\right), \ldots, f^{n-1}\left(w_{0}\right)$ for some $w_{0} \in W$.
[24\%]

1. (a) Let $\mathscr{C}^{\infty}(\mathbb{R})$ denote the vector space of all real valued functions on \mathbb{R} which has derivatives of every order. Consider the differential operator (a linear transforma(ion) $D: \mathscr{C}^{\infty}(\mathbb{R}) \rightarrow \mathscr{C}^{\infty}(\mathbb{R})$ given by

$$
D(y)=y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y
$$

where $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$. Show that $e^{\lambda x}$ lies in the kernel of D if and only if λ is a root of the polynomial

$$
p(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

(b) Find two linearly independent solutions to the homogeneous differential equation

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0 .
$$

(You have to show that they are indeed linearly independent.)
[36\%]
2. (a) Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis of V and let $T \in L(V, V)$. Prove that T is nilpotent if and only if there exist positive integers $r_{1}, r_{2}, \ldots, r_{n}$ such that $T^{r_{j}}\left(v_{j}\right)=0$ for $j=1,2, \ldots, n$.
(b) Let $T \in L(V, V)$ be nilpotent, and W a one-dimensional subspace of V. Show that W is cyclic with respect to T if and only if W lies in the kernel of T.
(c) Let $T \in L(V, V)$ be cyclic. Show that for $U \in L(V, V), T U=U T$ if and only if $U=g(T)$ for some polynomial $g(x) \in F[x]$.
3. Let $T \in L(V, V)$. Prove that there exists a nonzero linear transformation $S \in L(V, V)$ such that $T S=0$ if and only if there exists a nonzero vector $v \in V$ such that $T(v)=0$.
4. Let $n \geq 2$ and let $A, B \in M(n, \mathbb{C})$ be such that $A B=B A$. Show that A and B has a common eigenvector.

Work out all problems.

1. (6 points) Let E_{1} and E_{2} be two subsets of \mathbb{R}^{n} such that $E_{1} \subset E_{2}$ and $E_{2} \backslash E_{1}$ is countable. Show that

$$
\left|E_{1}\right|_{e}=\left|E_{2}\right|_{e}
$$

2. (6 points) Find a set $E \subset \mathbb{R}$ with outer measure zero and a function $f: E \rightarrow \mathbb{R}$ such that f is continuous on E and $f(E)=[0,1]$.
3. (8 points) Give an example of a sequence of measurable functions $\left\{f_{k}\right\}$ defined on a measurable set $E \subset \mathbb{R}^{n}$ such that the following strict inequalities hold:

$$
\int_{E} \liminf _{k \rightarrow \infty} f_{k} d x<\liminf _{k \rightarrow \infty} \int_{E} f_{k} d x<\underset{k \rightarrow \infty}{\limsup } \int_{E} f_{k} d x<\int_{E} \limsup _{k \rightarrow \infty} f_{k} d x
$$

4. (10 points) Suppose E is a Lebesgue measurable subset of \mathbb{R} with $|E|<\infty$. Prove that

$$
|E|=\sup \{|K|: K \subset E \text { and } K \text { is compact }\} .
$$

5. (10 points) Let $f: E \rightarrow \mathbb{R} \bigcup\{ \pm \infty\}$ be a nonnegative measurable function such that $\int_{E} f<\infty$. Show that for any $\varepsilon>0$ there exists $\delta>0$ such that for any measurable subset $E_{1} \subset E$ with $\left|E_{1}\right|<\delta$ we have $\int_{E_{1}} f<\varepsilon$.
6. (10 points) Let f_{k} be a sequence of nonnegative measurable functions defined on E. If $\lim _{k \rightarrow \infty} f_{k}=f$ and $f_{k} \leq f$ a.e. on E. Show that $\lim _{k \rightarrow \infty} \int_{E} f_{k}=\int_{E} f$.
(1) (6 points) Show that any closed subspace of a compact space is compact.
(2) (6 points) Let $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the smooth curve given by

$$
\alpha(s)=\frac{1}{\sqrt{2}}\left(s, \sqrt{1+s^{2}}, \log \left(s+\sqrt{1+s^{2}}\right)\right) .
$$

Here \log means natural logarithm. Show that α is unit speed, and compute its curvature and torsion. You may use the following calculus formulas:

$$
\frac{d}{d s} \sqrt{1+s^{2}}=\frac{s}{\sqrt{1+s^{2}}}, \quad \frac{d}{d s} \log \left(s+\sqrt{1+s^{2}}\right)=\frac{1}{\sqrt{1+s^{2}}}
$$

(3) (6 points) Let $S \subset \mathbb{R}^{3}$ be the set

$$
S=\left\{(x, y, z) \mid y^{2}=x z \text { and } y>0\right\} .
$$

Show that S is a regular surface.
(4) (6 points) Describe the region of the unit sphere covered by the image of the Gauss map of the paraboloid of revolution $z=x^{2}+y^{2}$.
(5) Consider the Enneper's surface

$$
\mathbf{x}(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+v u^{2}, u^{2}-v^{2}\right)
$$

and show that
(a) (2 points) The coofficients of the first fundamental form are

$$
E=G=\left(1+u^{2}+v^{2}\right)^{2}, \quad F=0 .
$$

(b) (2 points) The cocfficients of the second fundamental form are

$$
e=2, \quad g=-2, \quad f=0 .
$$

(c) (4 points) The principal curvatures are

$$
k_{1}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}, \quad k_{2}=-\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}} .
$$

(d) (4 points) The lines of curvature are the coordinate curves.
(e) (4 points) The asymptotic curves are $u+v=$ constant, $u-v=$ constant.
(6) (10 points) Let $S \subset \mathbb{R}^{3}$ be a regular, compact, orientable surface which is not homeomorphic to a sphere. Prove that there are points on S where the Gaussian curvature is positive, negative, and zero.

Algebra

Work out all of the problems and show details of your works.

Notation. \mathbb{Z} is the ring of integers. \mathbb{Q}, \mathbb{R}, and \mathbb{C} are the fields of rational numbers, real numbers, and complex numbers, respectively.
[8\%] 1. Let G be a finite group acting on a set S. Let $s \in S$ be fixed and denote $G_{s}=\{g \in G \mid$ $g \cdot s=s\}$, the isotropy group of s. Show that the order of the orbit $G s=\{g \cdot s \mid g \in G\}$ is equal to the index $\left[G: G_{s}\right]$ of the subgroup G_{s} in G.
[12\%] 2. (a) Let E be a finite extension field of the field F, and K a finite extension field of E. Show that $[K: F]=[K: E] \cdot[E: F]$.
(b) Let E be an extension field of the field F, and let $\alpha, \beta \in E$ be algebraic over F. Are $\alpha+\beta$ and $\alpha \beta$ algebraic over F ? Why or why not?
(c) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
[8\%] 3. Let G be a group and let End G be the set of all homomorphisms from G to G with additive and multiplicative binary operations on End G defined as follows:

$$
(f+g)(a)=f(a) g(a), \text { and } f \cdot g(a)=f(g(a)),
$$

for any $f, g \in \operatorname{End} G$ and $a \in G$. Show that End G is a ring if and only if G is abelian.
[12\%] 4. (a) Let R a ring and $a \in R$. Let I be the ideal generated by a. What is a typical element in I ?
(b) Show that in $\mathbb{Q}[x]$ every ideal is generated by a single element.
[10\%] 5. Let $R=\{a+b \boldsymbol{i} \mid a, b \in \mathbb{R}\}$, a subring of \mathbb{C}, where \boldsymbol{i} is the element satisfing $\boldsymbol{i}^{2}=-1$. Let M be an \mathbb{R}-module. Prove that M is an R-module if and only if there exists an \mathbb{R}-homomorphism $\varphi: M \rightarrow M$ such that $\varphi^{2}(x)=-x$ for all $x \in M$.

