advanced calculus

1. Let $f(x) = a_1 \sin x + a_2 \sin 2x + \dots + a_n \sin nx$, where a_1, \dots, a_n are real numbers and n is a positive integer. Given that $|f(x)| \le |\sin x|$ for all real x, prove that

$$|a_1 + 2a_2 + \dots + na_n| \le 1.$$

(15 points)

2. If a_0, a_1, \cdots, a_n are real numbers satisfying

$$\frac{a_0}{1} + \frac{a_1}{2} \cdots + \frac{a_n}{n+1} = 0,$$

show that the equation $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$ has at least one real zero. (15 points)

3. Define a function f by

$$f(x) = \begin{cases} x \cdot \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Prove or disprove that f is Lipschitz continuous on \mathbb{R} . (15 points) (A function f is Lipschitz continuous on \mathbb{R} if there is a constant L such that

$$|f(x) - f(y)| \le L|x - y|$$
 for all $x, y \in \mathbb{R}$.)

4. Let $f : \mathbb{R} \to \mathbb{R}$ be differential and $|f'(x)| \leq c < 1$ on \mathbb{R} . Assume that f(0) > 0. Show that there exists a solution $\tilde{x} > 0$ to the equation $f(\tilde{x}) = \tilde{x}$. (15 points)

5. Let $f \in C[0, 1]$ and f(0) = 0. Show that

$$\lim_{n \to \infty} \int_0^1 f(x^n) dx = 0.$$

(20 points)

6. Consider the pair of equations

$$\begin{cases} x^2 + y^2 + (z - 1)^2 = 4, \\ -x^2 - y + z^2 = 1. \end{cases}$$

(a) Is there a curve of intersection through (0, 0, -1)? (10 points) (b) Is there a curve of intersection through $(\sqrt{3}, 0, 2)$? (10 points)

Linear Algebra

Read carefully the definitions and terminology given in the following section **before** you work on any of the problems.

Work out all of the problems and show details of your works.

Definitions and Terminology. In what follows, we fix F for a field and V for a vector space over F. The field of real numbers is denoted by \mathbb{R} and the field of complex numbers is denoted by \mathbb{C} . The set of all positive integers is denoted by \mathbb{N} . Let L(V, V) be the set of all linear transformations from V to V, and let M(n, F) be the set of all $n \times n$ matrices, where n is a positive integer.

We call a linear transformation $f \in L(V, V)$ nilpotent if there exists some $n \in \mathbb{N}$ such that $f^n(v) = 0$ for all $v \in V$, and we call f cyclic if there exists some $v \in V$ such that V is spanned by v, f(v), $f^2(v)$, ..., $f^{n-1}(v)$. A subspace W of V is called cyclic with respect to f if it is spanned by w_0 , $f(w_0)$, $f^2(w_0)$, ..., $f^{n-1}(w_0)$ for some $w_0 \in W$.

[24%] 1. (a) Let $\mathscr{C}^{\infty}(\mathbb{R})$ denote the vector space of all real valued functions on \mathbb{R} which has derivatives of every order. Consider the differential operator (a linear transformation) $D : \mathscr{C}^{\infty}(\mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R})$ given by

$$D(y) = y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y,$$

where $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$. Show that $e^{\lambda x}$ lies in the kernel of D if and only if λ is a root of the polynomial

$$p(t) = t^{n} + a_{n-1}t^{n-1} + \dots + a_{1}t + a_{0}.$$

(b) Find two linearly independent solutions to the homogeneous differential equation

$$y'' - 5y' + 4y = 0.$$

(You have to show that they are indeed linearly independent.)

- [36%] 2. (a) Let v_1, v_2, \ldots, v_n be a basis of V and let $T \in L(V, V)$. Prove that T is nilpotent if and only if there exist positive integers r_1, r_2, \ldots, r_n such that $T^{r_j}(v_j) = 0$ for $j = 1, 2, \ldots, n$.
 - (b) Let $T \in L(V, V)$ be nilpotent, and W a one-dimensional subspace of V. Show that W is cyclic with respect to T if and only if W lies in the kernel of T.
 - (c) Let $T \in L(V, V)$ be cyclic. Show that for $U \in L(V, V)$, TU = UT if and only if U = g(T) for some polynomial $g(x) \in F[x]$.
- [20%] 3. Let $T \in L(V, V)$. Prove that there exists a nonzero linear transformation $S \in L(V, V)$ such that TS = 0 if and only if there exists a nonzero vector $v \in V$ such that T(v) = 0.
- [20%] 4. Let $n \ge 2$ and let $A, B \in M(n, \mathbb{C})$ be such that AB = BA. Show that A and B has a common eigenvector.

- Work out all problems.
- 1. (6 points) Let E_1 and E_2 be two subsets of \mathbb{R}^n such that $E_1 \subset E_2$ and $E_2 \setminus E_1$ is countable. Show that

$$|E_1|_e = |E_2|_e$$
.

- 2. (6 points) Find a set $E \subset \mathbb{R}$ with outer measure zero and a function $f : E \to \mathbb{R}$ such that f is continuous on E and f(E) = [0, 1].
- 3. (8 points) Give an example of a sequence of measurable functions $\{f_k\}$ defined on a measurable set $E \subset \mathbb{R}^n$ such that the following strict inequalities hold:

$$\int_E \liminf_{k \to \infty} f_k \, dx < \liminf_{k \to \infty} \int_E f_k \, dx < \limsup_{k \to \infty} \int_E f_k \, dx < \int_E \limsup_{k \to \infty} f_k \, dx.$$

4. (10 points) Suppose E is a Lebesgue measurable subset of \mathbb{R} with $|E| < \infty$. Prove that

$$|E| = \sup\{|K| : K \subset E \text{ and } K \text{ is compact}\}.$$

- 5. (10 points) Let $f: E \to \mathbb{R} \bigcup \{\pm \infty\}$ be a nonnegative measurable function such that $\int_E f < \infty$. Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that for any measurable subset $E_1 \subset E$ with $|E_1| < \delta$ we have $\int_{E_1} f < \varepsilon$.
- 6. (10 points) Let f_k be a sequence of nonnegative measurable functions defined on E. If $\lim_{k \to \infty} f_k = f$ and $f_k \le f$ a.e. on E. Show that $\lim_{k \to \infty} \int_E f_k = \int_E f$.

Geometry

- (1) (6 points) Show that any closed subspace of a compact space is compact.
- (2) (6 points) Let $\alpha \colon \mathbb{R} \to \mathbb{R}^3$ be the smooth curve given by

$$\alpha(s) = \frac{1}{\sqrt{2}} \left(s, \sqrt{1+s^2}, \log(s+\sqrt{1+s^2}) \right).$$

Here log means natural logarithm. Show that α is unit speed, and compute its curvature and torsion. You may use the following calculus formulas:

$$\frac{d}{ds}\sqrt{1+s^2} = \frac{s}{\sqrt{1+s^2}}, \qquad \frac{d}{ds}\log(s+\sqrt{1+s^2}) = \frac{1}{\sqrt{1+s^2}}.$$

(3) (6 points) Let $S \subset \mathbb{R}^3$ be the set

$$S = \{ (x, y, z) \mid y^2 = xz \text{ and } y > 0 \}.$$

Show that S is a regular surface.

- (4) (6 points) Describe the region of the unit sphere covered by the image of the Gauss map of the paraboloid of revolution $z = x^2 + y^2$.
- (5) Consider the Enneper's surface

$$\mathbf{x}(u,v) = \left(u - rac{u^3}{3} + uv^2, \ v - rac{v^3}{3} + vu^2, \ u^2 - v^2
ight)$$

and show that

(a) (2 points) The coefficients of the first fundamental form are

$$E = G = (1 + u^2 + v^2)^2, \quad F = 0.$$

(b) (2 points) The coefficients of the second fundamental form are

$$e = 2, \quad g = -2, \quad f = 0.$$

(c) (4 points) The principal curvatures are

$$k_1 = \frac{2}{(1+u^2+v^2)^2}, \quad k_2 = -\frac{2}{(1+u^2+v^2)^2}.$$

- (d) (4 points) The lines of curvature are the coordinate curves.
- (e) (4 points) The asymptotic curves are u + v = constant, u v = constant.
- (6) (10 points) Let S ⊂ R³ be a regular, compact, orientable surface which is not homeomorphic to a sphere. Prove that there are points on S where the Gaussian curvature is positive, negative, and zero.

1

Algebra

Work out all of the problems and show details of your works.

Notation. \mathbb{Z} is the ring of integers. \mathbb{Q} , \mathbb{R} , and \mathbb{C} are the fields of rational numbers, real numbers, and complex numbers, respectively.

- [8%] 1. Let G be a finite group acting on a set S. Let $s \in S$ be fixed and denote $G_s = \{g \in G \mid g \cdot s = s\}$, the isotropy group of s. Show that the order of the orbit $Gs = \{g \cdot s \mid g \in G\}$ is equal to the index $[G : G_s]$ of the subgroup G_s in G.
- [12%] 2. (a) Let E be a finite extension field of the field F, and K a finite extension field of E. Show that $[K : F] = [K : E] \cdot [E : F]$.
 - (b) Let E be an extension field of the field F, and let $\alpha, \beta \in E$ be algebraic over F. Are $\alpha + \beta$ and $\alpha\beta$ algebraic over F? Why or why not?
 - (c) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.
- [8%] 3. Let G be a group and let End G be the set of all homomorphisms from G to G with additive and multiplicative binary operations on End G defined as follows:

(f + g)(a) = f(a)g(a), and $f \cdot g(a) = f(g(a))$,

for any $f, g \in \text{End } G$ and $a \in G$. Show that End G is a ring if and only if G is abelian.

- [12%] 4. (a) Let R a ring and $a \in R$. Let I be the ideal generated by a. What is a typical element in I?
 - (b) Show that in $\mathbb{Q}[x]$ every ideal is generated by a single element.
- [10%] 5. Let $R = \{a + bi \mid a, b \in \mathbb{R}\}$, a subring of \mathbb{C} , where *i* is the element satisfing $i^2 = -1$. Let *M* be an \mathbb{R} -module. Prove that *M* is an *R*-module if and only if there exists an \mathbb{R} -homomorphism $\varphi : M \to M$ such that $\varphi^2(x) = -x$ for all $x \in M$.