國立成功大學九十八學年度 $\begin{aligned} & \text { 博 } \pm \text { 班 } \\ & \text { 入學考試 高等微積分 試題 共 } 1 \text { 頁 }\end{aligned}$

注意事項：作答時請務必在所屬答案卷上作答並標明題號。1．（10 points）Prove that the geometric series

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

converges uniformly on any closed interval $[a, b] \subset(-1,1)$ ．

2．（8 points）Prove that the volume bounded by the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

is $4 \pi a b c / 3$ ．

3．（8 points）Suppose that $\left\{E_{\alpha}\right\}_{\alpha \in A}$ is a collection of connected sets in a Euclidean space R^{n} such that $\cap_{\alpha \in A} E_{\alpha} \neq \phi$ ．Prove that $E=\bigcup_{\alpha \in A} E_{\alpha}$ is connected．

4．（8 points）Let E be a non－empty compact subset of R^{n} ．Prove that if f is continuous on E ，then f is uniformly continuous on E ．

5．（8 points）Given non－zero numbers $x_{0}, y_{0}, u_{0}, v_{0}, s_{0}, t_{0}$ that satisfy the simultaneous equations：

$$
\begin{aligned}
& u^{2}+s x+t y=0 \\
& v^{2}+t x+s y=0 \\
& 2 s^{2} x+2 t^{2} y-1=0 \\
& s^{2} x-t^{2} y=0
\end{aligned}
$$

please prove that there exist functions $u(x, y), v(x, y), s(x, y), t(x, y)$ and an open ball B containing （ x_{0}, y_{0} ）such that u, v, s, t are continuously differentiable and satisfy the above system on B such that $u\left(x_{0}, y_{0}\right)=u_{0}, v\left(x_{0}, y_{0}\right)=v_{0}, s\left(x_{0}, y_{0}\right)=s_{0}, t\left(x_{0}, y_{0}\right)=t_{0}$ ．

6．（ 8 points）Please prove that

$$
\lim _{A \rightarrow \infty} \int_{0}^{A} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

（Hint：$\frac{1}{x}=\int_{0}^{\infty} e^{-x t} d t, \quad x>0$. ）

國立成功大學九十八學年度 博 士 班

（1）［10pts］Let A be a 3×3 complex matrix satisfying $A^{3}=A^{2}$ ．Classify all such A＇s up to similarity．
（2）$[10 \mathrm{pts}]$ Let V be a finite－dimensional vector space over \mathbb{C} ．Let $A: V \rightarrow V$ be a linear transformation．Prove that A is diagonalizable if and only if the minimal polynomial of A has no multiple root．
（3）Let g be a 2×2 invertible complex matrix．Let $V=M_{2 \times 2}(\mathbb{C})$ be the vector space of 2×2 complex matrices．Let $f: V \rightarrow V$ be the linear transformation $f(A)=g A g^{-1}$ ．
（a）［5pts］Suppose the eigenvalues of g are a and b with $a \neq b$ ．Compute the eigenvalues of f ．
（b）$[5 \mathrm{pts}]$ Suppose

$$
g=\left[\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right] .
$$

Compute the eigenvalues of f ．
（4）Let A, B be complex 2×2 matrices such that

$$
\operatorname{det}(A)=\operatorname{det}(B)=1
$$

（a）［5pts］Prove

$$
\operatorname{tr}(A B)+\operatorname{tr}\left(A B^{-1}\right)=2 \operatorname{tr}(A) \operatorname{tr}(B) .
$$

（b）$[5 \mathrm{pts}]$ Prove

$$
\operatorname{tr}\left(A B A^{-1} B^{-1}\right)=\operatorname{tr}(A)^{2}+\operatorname{tr}(B)^{2}+\operatorname{tr}(A B)^{2}-\operatorname{tr}(A) \operatorname{tr}(B) \operatorname{tr}(A B)-2
$$

（5）Let $P=\{f \in \mathbb{R}[x]: \operatorname{deg}(f) \leq n\}$ ，i．e P is the vector space of real polynomials of degrees less than or equal to n ．
（a）［5pts］Let

$$
D: P \longrightarrow P, \quad D(f)=\frac{d f}{d x} .
$$

Prove that D is a linear transformation on P ．Compute the eigenvalues and the Jordan canonical form of D ．
（b）［5pts］Prove that

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

is an inner product on P ．For $n=2$ ，find an orthonormal basis and compute D^{*} ，the adjoint of D as defined in part（a）．

注意事項：作答時請務必在所屬答案卷上作答並標明题號。

1．Let $A_{n} \subset \mathbb{R}^{2}$ be the interior of the circle with radius 2 and center at $\left(0,1+\frac{(-1)^{n}}{n}\right)$ ． Find $\limsup \mathrm{p}_{n} A_{n}$ and $\liminf _{n} A_{n}$ ．（10 points）
（Recall that： $\lim \sup _{n} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$ and $\liminf A_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}$ ．）
2．Let μ be a finite measure on the σ－field \mathcal{F} ．If $A_{n} \in \mathcal{F}, n=1,2 \cdots$ ，and $A_{n} \uparrow A$ ， show that $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) . \quad$（10 points）

3．If $\mu(\Omega)<\infty$ ，show that $\|f\|_{\nu} \rightarrow\|f\|_{\infty}$ as $p \rightarrow \infty$ ．Give an example to show that this fails if $\mu(\Omega)=\infty$ ．（10 points）

4．Show that $\int_{1}^{\infty} e^{-t} \ln t d t=\lim _{n \rightarrow \infty} \int_{1}^{n}[1-(t / n)]^{n} \ln t d t$ ．（10 points）

Answer all the problems.

1. (10 pts) Let X be a finite set and H a finite p-group. Suppose H acts on X. Show that

$$
|X| \equiv\left|X_{0}\right| \quad \bmod p
$$

where $X_{0}=\{x \in X \mid g x=x$ for all $g \in G\}$.
2. (10 pts) Let G be a group of order 12 such that G has no elements of order 6 . Show that the Sylow 2-subgroup of G is normal in G.
3. (10%) An ideal M of a ring R is called a maximal ideal if for any ideal J such that $M \subset J \subset R$, then $J=M$ or $J=R$.
Let R be a commutative ring with identity. Show R / M is a field if and only if M is maximal.
4. (10%) Let E and F be fields.
(a) Show that any finite extension E over F is also an algebraic extension over F.
(b) Let α and β be algebraic over F. Show that for any $a, b \in F, a \alpha+b \beta$ is also algebraic over F.
Note: E is a finite extension over F if $\operatorname{dim}_{F} E<\infty$ and E is algebraic over F if for any $a \in E$, there exists a non-zero polynomial $f(x)$ over F such that $f(a)=0$.

- The End -

