國立成功大學 103 學年度「博士班」研究生甄試入學考試 【高等微積分】

advanced calculus

1. Define a function f by

$$f(x) = \begin{cases} x \cdot \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Prove or disprove that f is uniformly continuous on \mathbb{R} . (20 points)

2. Let f be a smooth function on (-1, 1) and $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $x \in (-1, 1)$. Let $\{x_m\}$ be a sequence with $x_m \neq 0$ for all $m \in \mathbb{N}$. Assume that $\{x_m\}$ converges to zero with $f(x_m) = 0$. Show that f = 0 on (-1, 1). (20 points)

3. Let f be continuous on [0,1] and suppose that f(0) = 0. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x^n) = 0.$$

(20 points)

- 4. Evaluate $\int_{\mathbf{R}^n} ||x||^4 \cdot e^{-||x||^2} dx$. (20 points)
- 5. Consider the inhomogeneous initial value problem

$$\begin{cases} y''(t) + \omega^2 y(t) = q(t), \\ y(0) = y'(0) = 0. \end{cases}$$
(0.1)

For each $s \leq t$, let z(t, s) be the solution of the homogeneous initial value problem

$$\begin{cases} z_{tt} + \omega^2 z = 0, \\ z(s,s) = 0, \quad z_t(s,s) = q(s). \end{cases}$$
(0.2)

Show that

$$u(t) = \int_0^t z(t,s) ds$$

is the solution of (0.1). (20 points)

Notation

- n: a positive integer
- $M_{n \times n}(F)$: the set of all $n \times n$ matrices over the field F
- \mathbb{R} : the field of all real numbers
- C: the field of all complex numbers
- A^{*}: the conjugate transpose of the matrix A
- 1. (10%) Let V be a 2013-dimensional real vector space, and let W be a 13-dimensional subspace of V. Show that there exist linear functionals T_1, \ldots, T_{2000} on V such that $W = N(T_1) \cap \cdots \cap N(T_{2000})$. (Here $N(T_i)$ denotes the null space of T_i for $i = 1, \ldots, 2000$.)
- 2. (12%) Show that if A is a 3×3 real matrix, then A is similar to

λ	0	0)		(0					/0	0	λ
0	λ	0	,	1	μ	0	,	or			$\begin{pmatrix} \mu \\ \nu \end{pmatrix}$
\ 0	0	λ)		/0	0	ν)			0/	1	ν]

for some $\lambda, \mu, \nu \in \mathbb{R}$.

- 3. (12%) Let A be a 6×6 complex matrix such that $A^3 = 0$. Find all possible Jordan canonical forms of A.
- 4. (10%) Let G be the multiplicative group of all invertible $n \times n$ complex matrices. Show that every element of finite order in G is diagonalizable.
- 5. (12%) Suppose T is a diagonalizable linear operator on a finite-dimensional real vector space V and W is a T-invariant subspace of V. Let $\lambda_1, \ldots, \lambda_k$ be all distinct eigenvalues

of T, and let $W_{\lambda_i} = \{ w \in W \mid T(w) = \lambda_i w \}$ for all *i*. Show that $W = \bigoplus_{i=1}^{i} W_{\lambda_i}$.

- 6. (12%) Suppose $N \in M_{n \times n}(\mathbb{C})$ is normal, i.e., $N^*N = NN^*$. Show that N is self-adjoint if and only if all eigenvalues of N are real.
- 7. Let $\langle A, B \rangle$ be the trace of AB^* for all $A, B \in M_{n \times n}(\mathbb{C})$.
 - (a) (10%) Show that $\langle \cdot, \cdot \rangle$ is an inner product on $M_{n \times n}(\mathbb{C})$.
 - (b) (10%) Let $P \in M_{n \times n}(\mathbb{C})$ be invertible, and let T be the linear operator on $M_{n \times n}(\mathbb{C})$ defined by $T(A) = P^{-1}AP$. Find the adjoint of T with respect to the inner product $\langle \cdot, \cdot \rangle$.
- 8. (12%) Let U(n) be the set of all $n \times n$ unitary (complex) matrices, and let u(n) be the set of all $n \times n$ complex matrices A with $A^* = -A$. There is a well-defined function $e: u(n) \to U(n)$ given by

$$e(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k.$$

Show that e is surjective.