【高等微積分】

advanced calculus

1．Define a function f by

$$
f(x)=\left\{\begin{array}{l}
x \cdot \sin (1 / x), \quad x \neq 0 \\
0, \quad x=0
\end{array}\right.
$$

Prove or disprove that f is uniformly continuous on \mathbb{R} ．（20 points）
2．Let f be a smooth function on $(-1,1)$ and $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ for $x \in(-1,1)$ ．Let $\left\{x_{m}\right\}$ be a sequence with $x_{m} \neq 0$ for all $m \in \mathbb{N}$ ．Assume that $\left\{x_{m}\right\}$ converges to zero with $f\left(x_{m}\right)=0$ ．Show that $f=0$ on $(-1,1) . \quad$（20 points）

3．Let f be continuous on $[0,1]$ and suppose that $f(0)=0$ ．Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right)=0
$$

（20 points）
4．Evaluate $\int_{\mathbf{R}^{n}}\|x\|^{4} \cdot e^{-\|x\|^{2}} d x . \quad$（20 points）
5．Consider the inhomogeneous initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(t)+\omega^{2} y(t)=q(t) \tag{0.1}\\
y(0)=y^{\prime}(0)=0
\end{array}\right.
$$

For each $s \leq t$ ，let $z(t, s)$ be the solution of the homogeneous initial value problem

$$
\left\{\begin{array}{l}
z_{t t}+\omega^{2} z=0 \tag{0.2}\\
z(s, s)=0, \quad z_{t}(s, s)=q(s)
\end{array}\right.
$$

Show that

$$
u(t)=\int_{0}^{t} z(t, s) d s
$$

is the solution of（0．1）．（20 points）

【線性代數】

Notation

－n ：a positive integer
－ $\mathrm{M}_{n \times n}(F)$ ：the set of all $n \times n$ matrices over the field F
－ \mathbb{R} ：the field of all real numbers
－ \mathbb{C} ：the field of all complex numbers
－A^{*} ：the conjugate transpose of the matrix A

1．（ 10% ）Let V be a 2013－dimensional real vector space，and let W be a 13 －dimensional subspace of V ．Show that there exist linear functionals T_{1}, \ldots, T_{2000} on V such that $W=\mathrm{N}\left(T_{1}\right) \cap \cdots \mathrm{N}\left(T_{2000}\right)$ ．（Here $\mathrm{N}\left(T_{i}\right)$ denotes the null space of T_{i} for $i=1, \ldots, 2000$ ．）

2．（ 12% ）Show that if A is a 3×3 real matrix，then A is similar to

$$
\left(\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right),\left(\begin{array}{lll}
0 & \lambda & 0 \\
1 & \mu & 0 \\
0 & 0 & \nu
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{lll}
0 & 0 & \lambda \\
1 & 0 & \mu \\
0 & 1 & \nu
\end{array}\right)
$$

for some $\lambda, \mu, \nu \in \mathbb{R}$ ．
3．（ 12% ）Let A be a 6×6 complex matrix such that $A^{3}=0$ ．Find all possible Jordan canonical forms of A ．

4．（ 10% ）Let G be the multiplicative group of all invertible $n \times n$ complex matrices．Show that every element of finite order in G is diagonalizable．

5．（12\％）Suppose T is a diagonalizable linear operator on a finite－dimensional real vector space V and W is a T－invariant subspace of V ．Let $\lambda_{1}, \ldots, \lambda_{k}$ be all distinct eigenvalues of T ，and let $W_{\lambda_{i}}=\left\{w \in W \mid T(w)=\lambda_{i} w\right\}$ for all i ．Show that $W=\bigoplus_{i=1}^{k} W_{\lambda_{i}}$ ．

6．（12\％）Suppose $N \in \mathrm{M}_{n \times n}(\mathbb{C})$ is normal，i．e．，$N^{*} N=N N^{*}$ ．Show that N is self－adjoint if and only if all eigenvalues of N are real．

7．Let $\langle A, B\rangle$ be the trace of $A B^{*}$ for all $A, B \in \mathrm{M}_{n \times n}(\mathbb{C})$ ．
（a）（ 10% ）Show that $\langle\cdot, \cdot\rangle$ is an inner product on $\mathrm{M}_{n \times n}(\mathbb{C})$ ．
（b）（ 10% ）Let $P \in \mathrm{M}_{n \times n}(\mathbb{C})$ be invertible，and let T be the linear operator on $\mathrm{M}_{n \times n}(\mathbb{C})$ defined by $T(A)=P^{-1} A P$ ．Find the adjoint of T with respect to the inner product $\langle\cdot, \cdot\rangle$ ．

8．（12\％）Let $U(n)$ be the set of all $n \times n$ unitary（complex）matrices，and let $\mathfrak{u}(n)$ be the set of all $n \times n$ complex matrices A with $A^{*}=-A$ ．There is a well－defined function $e: u(n) \rightarrow U(n)$ given by

$$
e(A)=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} .
$$

Show that e is surjective．

